Countries are reporting on average 7% cases of TB among children, and more extrapulmonary TB cases add to lack of data on paediatric burden. Lack of standard definitions, absence of simple/reliable diagnostic test and more extrapulmonary TB cases add to lack of data on paediatric burden countries, accounting for 8–20% of TB-related deaths. It is estimated that childhood TB constitutes 10–20% of all TB in high burden countries, with a slightly higher burden among males. Pulmonary TB is the most common form in children. It is also known that about 10% of the cases reported to RNTCP are from children under 14 years of age. Adults and older children more often have the infectious form of TB which can be detected by testing of sputum while in general, children have forms of TB which may be more easily picked up on chest radiograph. Also, there is difficulty to access the specimen as children would more often swallow than bring up sputum and lower sensitivity of the microbiological tests in children further add to this difficulty.

Mycobacterium perhaps is one singular organism contributing to most death of under-five among world's middle & lower-income nations, but it does not find place in the list of causes of death as it is difficult to diagnose and there is a large detection gap. Exact contribution by TB to 'Under 5 Mortality' is unknown. Many TB related deaths are possibly reported as pneumonia deaths due to similar respiratory symptoms. It is estimated that childhood TB constitutes 10–20% of all TB in high burden countries, accounting for 8–20% of TB-related deaths.

Lack of standard definitions, absence of simple/reliable diagnostic test and more extrapulmonary TB cases add to lack of data on paediatric TB. There is also gross under estimation of magnitude of problem. Countries are reporting on average 7% cases of TB among children, mostly clinically diagnosed and extrapulmonary. Numbers may be low as many children are treated outside National TB programmes. TB is usually an airborne infection. It is also to be emphasized that children can be infectious as well; especially older children and adolescents.

An imbalance between mycobacterial virulence and host immunity determines the progress of infection/disease. It is the interaction of both these factors that would decide whether the contacts would have an infection, whether the infection would remain latent or lead to a primary disease and as the child grows older, reactivation of the latent infection.

Risk of progression of the TB infection to disease is about 5-10% over lifetime in a healthy individual but this is higher in young children, nearly >50% in infants and 25% in 1-5 years. Rapid progression can occur in presence of severe malnutrition or HIV-TB co-infection, etc. Younger children are the most vulnerable and can have a disseminated disease with complications. The school-going age is the safest period. Thereafter, the risk would again increase as the second peak appears at adolescence. They would have more of adult type disease and pleural effusions.
history of contact with infectious TB cases (In a symptomatic child, contact with a person with any form of active TB within last 2 years may be significant).

Presumptive Extra Pulmonary TB: refers to the presence of organ specific symptoms and signs like swelling of lymph nodes, pain & swelling in joints, neck stiffness, disorientation etc and/or constitutional symptoms like significant weight loss, persistent fever for >2 weeks, night sweats.

AIMS AND OBJECTIVES:
- To study different clinical presentation in paediatric tuberculosis.
- To study different radiological appearances in cases of paediatric tuberculosis.
- To study the clinico-radiological correlation in the diagnosis of paediatric TB.

MATERIALS AND METHODS:
A total 254 Children (<18 years) presenting with suspected TB were prospectively enrolled by consecutive sampling from January 2019 to December 2019, at the inpatient and outpatient facilities of a tertiary care hospital, Ahmedabad. Suspected TB was defined as per the Indian Revised National TB Control Programme (RNTCP) guidelines.

Detailed history and physical examination were performed on each child by trained study physicians. Weight for age Z scores (WAZ) were used to assess the nutritional status (WHO Anthro version 3.2.2, January 2011) with malnutrition defined as WAZ < 2. After appropriate counselling and consent, blood was drawn for HIV testing (positive on two separate HIV ELISA tests or HIV DNA PCR for children >18 months).

Gastric aspirates (up to 3 consecutive samples) and when indicated other appropriate clinical samples (lymph nodes, cerebrospinal fluid (CSF), pleural fluid, etc.) were obtained for mycobacterial culture. Chest radiographs were also performed on each child and Computed tomography (CT), magnetic resonance imaging (MRI), and ultrasonography (US) were performed as indicated. Clinical samples were processed using standardized protocols. CBNAAT was the initial test of choice for microbiological confirmation. A sample consisting of recently discharged material from the bronchial tree with minimum amount of oral or nasopharyngeal material, presence of mucoid or recent discharged material from the bronchial tree was collected and CBNAAT was performed. CBNAAT was the initial test of choice for microbiological confirmation. A sample consisting of recently discharged material from the bronchial tree with minimum amount of oral or nasopharyngeal material, presence of mucoid or recent discharged material from the bronchial tree was collected and CBNAAT was performed.

Decontamination was performed with N-acetyl-L-cysteine and sodium hydroxide, and the resuspended pellets were used for acid fast bacilli (AFB) staining and smear microscopy as well as inoculation of Lowenstein Jensen (LJ) slants. The remaining was cultured using the MGIT (Becton- Dickinson) system. The MGIT 960 drug susceptibility testing (DST) for isoniazid and rifampicin was performed and confirmed on solid media. As a gold standard for diagnosis and for phenotypic DST, liquid cultures were used. Cultures were sent in all children who were CBNAAT negative and all presumptive DR TB cases.

RESULTS AND DISCUSSION:
In our study total 254 children with suspected TB were enrolled. Among them 69(27%) were CBNAAT negative and all presumptive DR TB cases. CBNAAT is a real-time PCR rapid technique for diagnosis of tuberculosis 53(77%) were rifampicin sensitive and 16(23%) were rifampicin resistant based on the CBNAAT reports.

DISCUSSION:
Primary childhood TB being paucibacillary, makes microbiological diagnosis (gold standard) difficult. Hence, chest radiograph is an important tool to support the diagnosis of pulmonary TB in children in the absence of microbiological confirmation. In relevant clinical setting, certain radiological lesions may be highly suggestive of tuberculosis: miliary pattern, hilar and/or paratracheal lymphadenopathy with or without parenchymal involvement and fibrocavitary lesions. All presumptive TB cases with these radiological patterns are considered to be probable TB and should be subjected to microbiology to confirm the diagnosis. In case microbiological investigations are negative these children can be considered to be cases of clinically diagnosed tuberculosis (TB). Clinical and radiological presentation is variable in different pathological state of pulmonary tuberculosis. CBNAAT is a real-time PCR rapid technique for diagnosis of TB and detection of rifampicin resistance conferring mutations within 2 hours. CBNAAT can be performed on both respiratory and non-respiratory specimens (GA, BAL, IS, pleural fluid, CSF, lymph node aspirate etc). The sensitivity and specificity of CBNAAT in sputum samples is around 98% and 99% for smear positive patients and 72% for smear negative culture positive patients. The sensitivity and specificity on GA have been 68% and 99% respectively. The yield of the test falls significantly to under 10%, if it is offered purely on clinical basis (symptom basis). While it performs well with CSF and LN aspirates, its yield is very poor with pleural or ascitic fluid. Limited cases may not represent the actual clinical and radiological presentation of childhood pulmonary tuberculosis but
CONCLUSION:
In our study, extrapulmonary tuberculosis patients were more common than pulmonary tuberculosis. Most common age group affected was between 5 to 10 years. Lower socio-economic status and malnutrition were the most common contributing factors to tuberculosis. Fever followed by cough was the most common presenting complaint. Among the radiological findings segmental consolidation followed by hilar lymphadenopathy were the most common findings. Among 69 confirmed pulmonary tuberculosis 53(77%) were rifampicin sensitive based on the CBNAAT reports.

Acknowledgements:
We thank Respiratory Medicine Department and DOTS centre GCS Medical college, hospital and research centre, Ahmedabad.

Amay Himanshu Khara. GCS medical college, hospital and research centre G2 block, PG Hostel, GCS Medical college, hospital and research centre, opposite DRM office, Naroda road, Ahmedabad-380025.

Kanhai Harish Patel. GCS medical college, hospital and research centre G2 block, PG Hostel, GCS Medical college, hospital and research centre, opposite DRM office, Naroda road, Ahmedabad-380025.

REFERENCES:
1) RNTCP Updated Paediatric TB Guidelines 2019 Developed by REVISED NATIONAL TUBERCULOSIS CONTROL PROGRAM and INDIAN ACADEMY OF PEDIATRICS.