ISSN - 2250-1991

Research Paper

Mathematics

Q-Level Subnearring Of Q-Intuitionistic L-Fuzzy Subnearrings

* M.M.Shanmugapriya ** K.Arjunan

* Department of Mathematics, Karpagam University, Coimbatore -641021

** Department of Mathematics, H.H. The Rajah's College, Pudukkottai-622001

ABSTRACT

In this paper, we study some of the properties of Q-level subnearring of Q-intuitionistic L-fuzzy subnearring of a nearring and prove some results on these. 2000 AMS SUBJECT CLASSIFICATION: 03F55, 08A72, 20N25. SUMMARY:

Let A be a Q-intuitionistic L-fuzzy subnearring of a nearring R. Then for α and β in L such that $\alpha \leq \alpha A(e, q)$ and $\beta \geq \nu A(e, q)$, $A_{(\alpha, \beta)}$ is a Q-level subnearring of R and let (R, +, .) be a nearring and A be a Q-intuitionistic L-fuzzy subset of R such that $A_{(\alpha, \beta)}$ be a Q-level subnearring of R. If α and β in L satisfying $\alpha \leq \alpha A(e, q)$ and $\beta \geq \nu A(e, q)$, then A is a Q-intuitionistic L-fuzzy subnearring of R. Also the homomorphic image of a Q-level subnearring of a Q-intuitionistic L-fuzzy subnearring of a nearring R is a Q-level subnearring of a Q-intuitionistic L-fuzzy subnearring of a nearring R is a Q-level subnearring of a Q-intuitionistic L-fuzzy subnearring of a nearring R is a Q-level subnearring of a Q-intuitionistic L-fuzzy subnearring of a nearring R is a Q-level subnearring of a Q-intuitionistic L-fuzzy subnearring of a nearring R is a Q-level subnearring of a Q-intuitionistic L-fuzzy subnearring of a nearring R is a Q-level subnearring of a Q-intuitionistic L-fuzzy subnearring of a nearring R is a Q-level subnearring of a Q-intuitionistic L-fuzzy subnearring of a nearring R is a Q-level subnearring of a Q-intuitionistic L-fuzzy subnearring of a nearring R is a Q-level subnearring of a Q-intuitionistic L-fuzzy subnearring of a nearring R is a Q-level subnearring O A-intuitionistic L-fuzzy subnearring O A-intuitionistic L-

Keywords : (Q,L)-fuzzy subset, Q-intuitionistic L-fuzzy subset, Q-intuitionistic L-fuzzy subnearring, Q-level subset.

INTRODUCTION.

After the introdution of fuzzy sets by L.A.Zadeh[16], several researchers explored on the generalization of the notion of fuzzy set. The concept of intuitionistic L-fuzzy subset was introduced by K.T.Atanassov[2], as a generalization of the notion of fuzzy set. Azriel Rosenfeld[3] defined a fuzzy groups. Asok Kumer Ray[1] defined a product of fuzzy subgroups and A.Solairaju and R.Nagarajan[14] have introduced and defined a new algebraic structure called Q-fuzzy subgroups. We introduce the concept of Q-level subnearring of Q-intuitionistic L-fuzzy subnearring of a nearring and established some results.

1.PRELIMINARIES:

1.1 Definition: Let X be a non-empty set and L = (L, \leq) be a lattice with least element 0 and greatest element 1 and Q be a non-empty set. A (Q, L)-fuzzy subset A of X is a function

$\mathsf{A}:\mathsf{XxQ}\to\mathsf{L}.$

1.2 Definition: Let (L, \leq) be a complete lattice with an involutive order reversing operation N : L \rightarrow L and Q be a non-empty set. A Q-intuitionistic L-fuzzy subset (QILFS) A in X is defined as an object of the form A={< (x, q), μ A(x, q), ν A(x, q) > / x in X and q in Q },

where $\mu A : XxQ \rightarrow L$ and $\nu A : XxQ \rightarrow L$ define the degree of membership and the degree of non-membership of the element $x \in X$ respectively and for every $x \in X$ and q in Q satisfying $\mu A(x, q) \leq N(\nu A(x, q))$.

1.3 Definition: Let (R, +, .) be a nearring. A Q-intuitionistic L-fuzzy subset A of R is said to be a Q-intuitionistic L-fuzzy subnearring(QILFSNR) of R if it satisfies the following axioms:

(i) $\mu A(x - y, q) \ge \mu A(x, q) \land \mu A(y, q)$

- (ii) $\mu A(xy, q) \ge \mu A(x, q) \land \mu A(y, q)$
- (iii) $v A(x-y, q) \leq v A(x, q) \vee v A(y, q)$
- (iv) $\lor A(xy, q) \le \lor A(x, q) \lor \lor A(y, q)$, for all x and y in R and q in Q.

1.4 Definition: Let X and X' be any two sets. Let $f: X \to X'$ be any function and A be a Q-intuitionistic L-fuzzy subset in X, V be a Q-intuitionistic L-fuzzy subset in f(X) = X', defined by $\mu V(y, q) = \sup_{\alpha \in G_{n}} \mu A(x, q)$ and $\nu V(y, q) = \inf_{\alpha \in G_{n}} \nu A(x, q)$, for all x in X and y in X'. A is called a preimage of V under f and is denoted by f-1(V).

1.5 Definition: Let A be a Q-intuitionistic L-fuzzy subset of X. For α and β in L, a Q-level subset of A corresponding to α , β is the set A_(α, β) = { $x \in X : \mu A(x, q) \ge \alpha$ and $\nu A(x, q) \le \beta$ }.

2.- Q-LEVEL SUBNEARRING OF Q-INTUITIONISTIC L-FUZZY

SUBNEARRINGS OF R

2.1 Theorem: Let A be a Q-intuitionistic L-fuzzy subnearring of a nearring R. Then for α and β in L such that $\alpha \leq \mu A(e, q)$ and $\beta \geq v A(e, q), A(\alpha, \beta)$ is a Q-level subnearring of R.

Proof : For all x and y in A(α , β), we have, μ A(x, q) $\geq \alpha$ and ν A(x, q) $\leq \beta$ and μ A(y, q) $\geq \alpha$ and ν A(y, q) $\leq \beta$. Now, μ A(x - y, q) $\geq \mu$ A(x, q) $\land \mu$ A(y, q) $\geq \alpha \land \alpha = \alpha$, which implies that,

 $\begin{array}{l} \mu A(x-y,q) \geq \alpha \ . \ And, \ \mu A(xy,q) \geq \mu A(x,q) \land \mu A(y,q) \geq \alpha \land \\ \alpha = \alpha \ , \ which \ implies \ that, \ \mu A(xy,q) \geq \alpha \ . \ And \ also, \ \nu A(x-y,q) \\ q) \leq \nu A(x,q) \lor \ \nu A(y,q) \leq \beta \lor \beta = \beta \ , \ which \ implies \ that, \\ \nu A(x-y,q) \leq \beta \ . \ And, \ \nu A(xy,q) \leq \nu A(x,q) \lor \nu A(y,q) \leq \beta \\ \beta \lor \beta = \beta \ , \ which \ implies \ that, \ \nu A(xy,q) \leq \beta \ . \ Therefore, \\ \mu A(x-y,q) \geq \alpha \ and \ \nu A(x-y,q) \leq \beta \ and \ \mu A(xy,q) \geq \alpha \ and \\ \nu A(xy,q) \leq \beta \ . \ We \ get, \ x-y \ and \ xy \ in \ A_{(\alpha,\beta)}. \ Hence \ A_{(\alpha,\beta)} \ is \\ a \ Q-level \ subring \ of \ the \ nearring \ R. \end{array}$

2.2 Theorem: Let A be a Q-intuitionistic L-fuzzy subnearring of a nearring R. Then two Q-level subnearrings A_(\alpha1, \beta1), A_(\alpha2, β2) and α_1 , α_2 , β_1 , β_2 in L and $\alpha 1 \le \mu A(e, q)$, $\alpha 2 \le \mu A(e, q)$, q and $\beta 1 \ge \nu A(e, q)$, $\beta 2 \ge \nu A(e, q)$ with $\alpha 2 < \alpha 1$ and $\beta 1 < \beta 2$ of A are equal if and only if there is no x in R such that $\alpha 1 > \mu A(x, q) > \alpha 2$ and $\beta 1 < \nu A(x, q) < \beta 2$.

Proof : Assume that $A_{(\alpha_1, \beta_1)} = A_{(\alpha_2, \beta_2)}$. Suppose there exists x in R such that $\alpha 1 > \mu A(x, q) > \alpha 2$ and $\beta 1 < \nu A(x, q) < \beta 2$. Then $A_{(\alpha_1, \beta_1)} \subseteq A_{(\alpha_2, \beta_2)}$ implies x belongs to $A_{(\alpha_2, \beta_2)}$, but not in

ISSN - 2250-1991

 $A_{(\alpha 1, \beta 1)}$. This is contradiction to $A_{(\alpha 1, \beta 1)} = A_{(\alpha 2, \beta 2)}$.

Therefore there is no x in R such that $\alpha 1 > \mu A(x, q) > \alpha 2$ and $\beta 1 < \nu A(x, q) < \beta 2$. Conversely, if there is no x in R such that $\alpha 1 > \mu A(x, q) > \alpha 2$ and $\beta 1 < \nu A(x, q) < \beta 2$. Then $A_{(\alpha 1, \beta 1)} = A_{(\alpha 2, \beta 2)}$.

2.3 Theorem: Let (R, +, .) be a nearring and A be a Q-intuitionistic L-fuzzy subset of R such that A(α , β) be a Q-level subnearring of R. If α and β in L satisfying $\alpha \leq \mu$ A(e, q) and $\beta \geq v$ A(e, q), then A is a Q-intuitionistic L-fuzzy subnearring of R.

Proof: Let (R, +, .) be a nearring and x, y in R. Let $\mu A(x, q) = \alpha 1$ and $\mu A(y, q) = \alpha 2$, $\nu A(x, q) = \beta 1$ and $\nu A(y, q) = \beta 2$.

Case (i): If $\alpha 1 < \alpha 2$ and $\beta 1 > \beta 2$, then x, $y \in A_{(\alpha 1, \beta 1)}$. As $A_{(\alpha 2, \beta 2)}$ is a Q-level subnearring of R, we get x - y and xy in . Now, $\mu A(x - y, q) \ge \alpha 1 = \alpha 1 \land \alpha 2 = \mu A(x, q) \land \mu A(y, q)$, which implies that $\mu A(x - y, q) \ge \mu A(x, q) \land \mu A(y, q)$, for all x and y in R. Also, $\mu A(x, q) \ge \alpha 1 = \alpha 1 \land \alpha 2 = \mu A(x, q) \land \mu A(y, q)$, which implies that $\mu A(x - y, q) \ge \mu A(x, q) \land \mu A(y, q) \land \mu A(y, q)$, which implies that $\mu A(x - y, q) \ge \mu A(x, q) \land \mu A(y, q) \land \mu A(y, q)$, which implies that $\mu A(x - y, q) \ge \mu A(x, q) \land \mu A(y, q)$, $\alpha (x, q) \land \nu A(y, q)$, which implies that $\nu A(x - y, q) \le \beta 1 = \beta 1 \lor \beta 2 = \nu A(x, q) \land \nu A(y, q)$, for all x and y in R. Also, $\nu A(x - y, q) \le \gamma A(x, q) \land \nu A(x, q) \land \nu A(y, q)$, which implies that $\nu A(x - y, q) \le \beta 1 \ge \beta 2 = \nu A(x, q) \land \nu A(y, q)$, which implies that $\nu A(x - y, q) \le \beta 1 \ge \beta 2 = \nu A(x, q) \land \nu A(y, q)$, which implies that $\nu A(x - y, q) \le \beta 1 \ge \beta 2 = \nu A(x, q) \land \nu A(y, q)$, which implies that $\nu A(x - y, q) \le \beta 1 \ge \beta 1 \lor \beta 2 = \nu A(x, q) \land \nu A(y, q)$, which implies that $\nu A(x - y, q) \le \beta 1 \ge \beta 1 \lor \beta 2 = \nu A(x, q) \land \nu A(y, q)$, which implies that $\nu A(x - y, q) \le \beta 1 \ge \beta 1 \lor \beta 2 = \nu A(x, q) \land \nu A(y, q)$, which implies that $\nu A(x - y, q) \le \beta 1$

Case (ii): If $\alpha 1 < \alpha 2$ and $\beta 1 < \beta 2$, then x, $y \in A_{(\alpha^1, \beta^1)}$. As $A_{(\alpha^2, \beta^2)}$ is a Q-level subnearring of R, we have x - y and xy in $A_{(\alpha^1, \beta^1)}$. Now, $\mu A(x-y, q) \ge \alpha 1 = \alpha 1 \land \alpha 2 = \mu A(x, q) \land \mu A(y, q)$, which implies that $\mu A(x-y, q) \ge \mu A(x, q) \land \mu A(y, q)$, for all x and y in R. Also, $\mu A(x, q) \ge \alpha 1 = \alpha 1 \land \alpha 2 = \mu A(x, q) \land \mu A(y, q)$, which implies that $\mu A(x-y, q) \ge \alpha 1 = \alpha 1 \land \alpha 2 = \mu A(x, q) \land \mu A(y, q)$, for all x and y in R. Also, $\mu A(x, q) \ge \alpha 1 = \alpha 1 \land \alpha 2 = \beta A(x, q) \land \mu A(y, q)$, which implies that $\mu A(xy, q) \ge \mu A(x, q) \land \mu A(y, q)$, for all x and y in R. And, $\nu A(x-y, q) \le \beta 2 = \beta 2 \lor \beta 1 = \nu A(y, q) \lor \nu A(x, q)$, which implies that $\nu A(x-y, q) \le \beta 2 = \beta 2 \lor \beta 1 = \nu A(y, q) \lor \nu A(x, q)$, which implies that $\nu A(xy, q) \le \beta 2 = \beta 2 \lor \beta 1 = \nu A(y, q) \lor \nu A(x, q)$, which implies that $\nu A(xy, q) \le \nu A(x, q) \lor \nu A(y, q)$, for all x and y in R.

Case (iii): If $\alpha 1 > \alpha 2$ and $\beta 1 > \beta 2$, then x, $y \in A_{(\alpha 1, \beta 1)}$. As $A_{(\alpha 2, \beta 2)}$ is a Q-level subnearring of R, we have x -y and xy $\in A_{(\alpha 1, \beta 1)}$. Now, $\mu A(x-y, q) \ge \alpha 2 = \alpha 2 \land \alpha 1 = \mu A(y, q) \land \mu A(x, q)$, which implies that $\mu A(x-y, q) \ge \mu A(x, q) \land \mu A(y, q)$, for all x and y in R. Also, $\mu A(xy, q) \ge \alpha 2 = \alpha 2 \land \alpha 1 = \mu A(y, q) \land \mu A(y, q)$, by the limplies that $\mu A(x-y, q) \ge \mu A(x, q) \land \mu A(y, q)$, for all x and y in R. Also, $\mu A(xy, q) \ge \alpha 2 = \alpha 2 \land \alpha 1 = \mu A(y, q) \land \mu A(x, q)$, which implies that $\mu A(x-y, q) \ge \mu A(x, q) \land \mu A(y, q)$, for all x and y in R. And, $A(x-y, q) \le \mu A(x, q) \land \beta 2 = v A(x, q) \lor v A(y, q)$, which implies that $v A(x-y, q) \le \gamma A(x, q) \lor v A(y, q)$, for all x and y in R. Also, $v A(xy, q) \le \beta 1 = \beta 1 \lor \beta 2 = v A(x, q) \lor v A(y, q)$, which implies that $v A(xy, q) \le v A(x, q) \lor v A(y, q)$, for all x and y in R.

Case (iv): If $\alpha 1 > \alpha 2$ and $\beta 1 < \beta 2$, then $x, y \in A_{(\alpha_1, \beta_1)}$. As $A_{(\alpha_2, \beta_2)}$ is a Q-level subnearring of R, we have x-y and xy in $A_{(\alpha_1, \beta_1)}$. Now, $\mu A(x-y, q) \ge \alpha 2 = \alpha 2 \land \alpha 1 = \mu A(y, q) \land \mu A(x, q)$, which implies that $\mu A(x-y, q) \ge \mu A(x, q) \land \mu A(y, q)$, for all x and y in R.

Also, $\mu A(xy, q) \ge \alpha 2 = \alpha 2 \land \alpha 1 = \mu A(y, q) \land \mu A(x, q)$, which implies that $\mu A(xy, q) \ge \mu A(x, q) \land \mu A(y, q)$, for all x and y in R. And, $\nu A(x-y, q) \le \beta_2 = \beta_2 \lor \beta_1 = \nu A(y, q) \lor \nu A(x, q)$, which implies that $\nu A(x-y, q) \le \nu A(x, q) \lor \nu A(y, q)$, for all x and y in R. Also, $\nu A(xy, q) \le \beta_2 = \beta_2 \lor \beta_1 = \nu A(y) \lor \nu A(x)$, which implies that $\nu A(xy, q) \le \nu A(x, q) \lor \nu A(x, q) \lor \nu A(x, q) \lor \nu A(x, q) \lor \nu A(x)$, which implies that $\nu A(xy, q) \le \nu A(x, q) \lor \mu A(x, q) \lor \mu A(x) \lor A(x, q) \lor \mu A(x) \lor A$

Case (v): If $\alpha_1 = \alpha_2$ and $\beta_1 = \beta_2$. It is trivial.

In all the cases, A is a Q-intuitionistic L-fuzzy subnearring of the nearring R.

2.4 Theorem: Let A be a Q-intuitionistic L-fuzzy subnearring of a nearring R. If any two Q-level subnearrings of A belongs to R, then their intersection is also Q-level subnearring of A in R.

Proof : Let α_1 , α_2 , β_1 , $\beta_2 \in L$ and $\alpha_1 \leq \mu A(e, q)$, $\alpha_2 \leq \mu A(e, q)$

q) and $\beta_1 \ge v A(e, q), \beta_2 \ge v A(e, q).$

 $\begin{array}{l} \text{Case (i): If } \alpha \ 1 < \mu \ A(x,q) < \alpha \ 2 \ \text{and} \ \beta \ 1 > \nu \ A(x,q) > \beta \ 2, \ \text{then} \\ A_{(\alpha 1, \ \beta \ 1)} \subseteq \ A_{(\alpha 2, \ \beta 2)} \,. \end{array}$

Therefore, $A_{(\alpha1,\ \beta1)} \cap A_{(\alpha2,\ \beta2)} = A_{(\alpha2,\ \beta2)}$, but $A_{(\alpha1,\ \beta1)}$ is a Q-level subnearring of A.

Case (ii): If $\alpha_1 > \mu A(x, q) > \alpha_2$ and $\beta_1 < \nu A(x, q) < \beta_2$, then $A_{(\alpha_1, \beta_1)} \subseteq A_{(\alpha_2, \beta_2)}$.

Therefore, $A_{(\alpha 1,\ \beta 1)} \cap A_{(\alpha 2,\ \beta 2)} = A_{(\alpha 1,\ \beta 1)},$ but $A_{(\alpha 1,\ \beta 1)}$ is a Q-level subnearring of A.

Case (iii): If $\alpha_1 \leq \mu A(x, q) \leq \alpha_2$ and $\beta_1 \leq \nu A(x, q) \leq \beta_2$, then $A_{(\alpha 2, \beta 1)} \subseteq A_{(\alpha 1, \beta 2)}$.

Therefore, $A_{_{(\alpha 2,\ \beta 1)}} \cap A_{_{(\alpha 1,\ \beta 2)}} = A_{_{(\alpha 2,\ \beta 1)}}$, but $A_{_{(\alpha 2,\ \beta 1)}}$ is a Q-level subnearring of A.

Case (iv): If $\alpha_1 > \mu_A(\mathbf{x}, \mathbf{q}) > \alpha_2$ and $\beta_1 > \nu_A(\mathbf{x}, \mathbf{q}) > \beta_2$ then $A_{(\alpha_1, \beta_2)}$

$$\subseteq A_{(\alpha_2,\beta_1)}$$
.

Therefore, $A_{(\alpha_1,\beta_2)} \cap A_{(\alpha_2,\beta_1)} = A_{(\alpha_1,\beta_2)}$, but $A_{(\alpha_1,\beta_2)}$ is a Q-

level subnearring of A.

Case (v): If $\alpha_1 = \alpha_2$ and $\beta_1 = \beta_2$, then $A_{(\alpha_1,\beta_1)} = A_{(\alpha_2,\beta_2)}$

In all cases, intersection of any two Q-level subnearrings is a Q-level subnearring of A.

2.5 Theorem: Let A be a Q-intuitionistic L-fuzzy subnearring of a nearring R. If α_i , $\beta_i \in L$, $\alpha_i \leq \mu_A(e, q)$ and $\beta_j \geq v_A(e, q)$ and $A_{(\alpha_i, \beta_j)}$, i, $j \in I$ is a collection of Q-level subnearrings of A, then

their intersection is also a Q-level subnearring of A.

Proof: It is trivial.

2.6 Theorem: Let A be a Q-intuitionistic L-fuzzy subnearring of a nearring R. If any two Q-level subnearrings of A belongs to R, then their union is also a Q-level subnearring of A in R.

Proof : Let α_1 , α_2 , β_1 , $\beta_2 \in L$ and $\alpha_1 \leq \mu_A(e, q)$, $\alpha_2 \leq \mu_A(e, q)$ and $\beta_1 \geq \nu_A(e, q)$, $\beta_2 \geq \nu_A(e, q)$.

Case (i): If $\alpha_1 < \mu_A(x, q) < \alpha_2$ and $\beta_1 > \nu_A(x, q) > \beta_2$ then $A_{(\alpha_2, \beta_2)}$

$$\subseteq A_{(\alpha_1,\beta_1)}$$
.

Therefore, $A_{(\alpha_1,\beta_1)} \cup A_{(\alpha_2,\beta_2)} = A_{(\alpha_1,\beta_1)}$, but $A_{(\alpha_1,\beta_1)}$ is a Q-level

subnearring of A.

Case (ii): If $\alpha_1 > \mu_A(\mathbf{x}, \mathbf{q}) > \alpha_2$ and $\beta_1 < \nu_A(\mathbf{x}, \mathbf{q}) < \beta_2$, then $A_{(\alpha_1, \beta_1)}$

$$\subseteq A_{(\alpha_2,\beta_2)}.$$

Therefore, $A_{(\alpha_1,\beta_1)} \cup A_{(\alpha_2,\beta_2)} = A_{(\alpha_2,\beta_2)}$, but $A_{(\alpha_2,\beta_2)}$ is a Q-level subnearing of A.

Case (iii): If $\alpha_1 < \mu_A(\mathbf{x}, \mathbf{q}) < \alpha_2$ and $\beta_1 < \nu_A(\mathbf{x}, \mathbf{q}) < \beta_2$, then $A_{(\alpha_2, \beta_1)}$

 $\subseteq A_{(\alpha_1,\beta_2)}.$

Therefore, $A_{(\alpha_2,\beta_1)} \cup A_{(\alpha_1,\beta_2)} = A_{(\alpha_1,\beta_2)}$, but $A_{(\alpha_1,\beta_2)}$ is a Q-level subnearring of A.

Case (iv): If $\alpha_1 > \mu_A(\mathbf{x}, \mathbf{q}) > \alpha_2$ and $\beta_1 > \nu_A(\mathbf{x}, \mathbf{q}) > \beta_2$ then $A_{(\alpha_1, \beta_2)}$

$$\subseteq A_{(\alpha_2,\beta_1)}.$$

Therefore, $A_{(\alpha_1,\beta_2)}\cup A_{(\alpha_2,\beta_1)}\text{=} A_{(\alpha_2,\beta_1)}\text{, but }A_{(\alpha_2,\beta_1)}$ is

a Q-level subnearring of A.

Case (v): If $\alpha_1 = \alpha_2$ and $\beta_1 = \beta_2$, then $A_{(\alpha_1, \beta_1)} = A_{(\alpha_2, \beta_2)}$

In all cases, union of any two Q-level subnearrings is a Q-level subnearring of A.

2.7 Theorem: Let A be a Q-intuitionistic L-fuzzy subnearring of a nearring R. If α_i , $\beta_j \in L$, $\alpha_i \leq \mu_A(e, q)$ and $\beta_j \geq \nu_A(e, q)$ and $A_{(\alpha_i, \beta_j)}$, i, $j \in I$ is a collection of Q-level subnearrings of A,

then their union is also a Q-level subnearring of A.

Proof: It is trivial.

2.8 Theorem: Any subnearring H of a nearring R can be realized as a Q-level subnearring of some Q-intuitionistic L-fuzzy subnearring of R.

Proof: Let A be the Q-intuitionistic L-fuzzy subset of a nearring R defined by

 $\mu_{A}(x, q) = \alpha \text{ if } x \in H, 0 < \alpha \leq 1$

0 if $x \notin H$, and

 $v_{A}(x, q) = \beta$ if $x \in H$, $0 \le \beta \le 1$

0 if $x \notin H$,

and $\alpha + \beta \le 1$, where H is subnearring of a nearring R.

We claim that A is a Q-intuitionistic L-fuzzy subring of a nearring R.

Let x and y in R. If x and y in H, then x–y and xy in H, since H is a subnearring of R, we have $\mu_A(x-y, q) = \alpha$, $\mu_A(x, q) = \alpha$, $\mu_A(y, q) = \alpha$, $\mu_A(x, q) = \alpha$, $\mu_A(y, q) = \alpha$, $\mu_A(x, q) = \beta$, $v_A(y, q) = \beta$, $v_A(x, q) = \beta$. So, $\mu_A(x-y, q) \ge \mu_A(x, q) \land \mu_A(y, q)$ and $\mu_A(xy, q) \ge \mu_A(x, q) \land \mu_A(y, q)$. Also, $v_A(x-y, q) \le v_A(x, q) \lor v_A(y, q)$ and $v_A(xy, q) \le v_A(x, q) \lor v_A(y, q)$. If $x, y \notin H$, then x–y and xy may or may not belong to H. Clearly $\mu_A(x-y, q) \ge \mu_A(x, q) \land \mu_A(y, q)$, $\mu_A(x, q) \land \mu_A(y, q)$ and $v_A(x-y, q) \le v_A(x, q) \lor v_A(y, q)$. Hence, A is a Q-intuitionistic L-fuzzy subnearing of R.

2.9 Theorem: The homomorphic image of a Q-level subnearring of a Q-intuitionistic L-fuzzy subnearring of a nearring R is a Q-level subnearring of a Q- intuitionistic L-fuzzy subnearring of a nearring R^I.

Proof: Let (R, +, .) and (Rⁱ, +, .) be any two nearrings and f : R → Rⁱ be a homomorphism. That is, f(x + y) = f(x) + f(y) and f(xy) = f(x)f(y), for all x and y in R. Let A be a Q-intuitionistic L-fuzzy subnearring of a nearring R and V be the homomorphic image of A under f. Clearly V is a Q-intuitionistic L-fuzzy subnearring of a nearring Rⁱ. Let x and y in R and q in Q, implies f(x) and f(y) in Rⁱ and A_(α,β) be a Q-level subnearring of A. That is, μ_A(x, q) ≥ α and v_A(x, q) ≤ β; μ_A(y, q) ≥ α and v_A(y, q) ≤ β; μ_A(x-y, q) ≥ α, μ_A(xy, q) ≥ α and v_A(x-y, q) ≤ β, v_A(xy, q) ≤ β. We have to prove that f (A_(α,β)) is a Q-level subnearring of V. Now, μ_V(f(x), q) ≥ μ_A(x, q) ≥ α, which implies that μ_V(f(x), q) ≥ α; and μ_V(f(y), q) ≥ μ_A(y, q) ≥ α. Also, μ_V(f(x)f(y), q) = μ_V(f(xy), q) ≥ μ_A(xy, q) ≥ α, which implies that μ_V(f(x), q) ≥ α. And, ν_V(f(x), - f(y), q) = μ_V(f(x-y), q) ≥ μ_A(x-y, q) ≥ β. which implies that μ_V(f(x)-f(y), q) ≤ β, which implies that ν_V(f(x), q) ≤ β and ν_V(f(x), q) ≤ ν_A(y, q) ≤ β, which implies that ν_V(f(x), q) ≤ β and ν_V(f(x), q) ≤ ν_A(y, q) ≤ β, which implies that ν_V(f(x), q) ≤ β and ν_V(f(x), q) ≤ ν_A(y, q) ≤ β, which implies that ν_V(f(y), q) = β and ν_V(f(x), q) ≤ ν_A(y, q) ≤ β, which implies that ν_V(f(y), q) ≤ β and ν_V(f(x)-f(y), q) = ν_V(f(x-y), q) ≤ ν_A(x-y, q) ≤ β, which implies that ν_V(f(x)-f(y), q) ≤ β. Also, ν_V(f(x)f(y), q) = ν_V(f(xy), q) ≤ β $v_A(xy,q) \leq \beta$, which implies that $v_V(f(x)f(y),q) \leq \beta$. Therefore, $\mu_V(f(x)-f(y),q) \geq \alpha$,

 $\begin{array}{l} v_{v}(\ f(x)-f(y),\ q\) \leq \beta,\ \mu_{v}(\ f(x)f(y),\ q\) \geq \alpha \ and \ v_{v}(\ f(x)f(y),\ q\) \leq \beta.\\ Hence \ f(\ A_{(\alpha,\ \beta)}) \ is \ a \ Q-level \ subnearring \ of \ a \ Q-intuitionistic \ L-fuzzy \ subnearring \ V \ of \ R^{!}. \end{array}$

2.10 Theorem: The homomorphic pre-image of a Q-level subnearring of a Q-intuitionistic

L-fuzzy subnearring of a nearring R^{1} is a Q-level subnearring of a Q-intuitionistic L-fuzzy subnearring of a nearring R.

Proof: Let (R, +, .) and $(R^{i}, +, .)$ be any two nearrings and f : $R \rightarrow R^{i}$ be a homomorphism. That is, f(x + y) = f(x) + f(y) and f(xy) = f(x)f(y), for all x and y in R. Let V be a Q-intuitionistic L-fuzzy subnearring of a nearring Rⁱ and A be a homomorphic pre-image of V under f. Clearly A is a Q-intuitionistic L-fuzzy subnearring of the nearring R. Let f(x) and f(y) in Rⁱ, implies x and y in R and q in Q. Let $f(A_{(\alpha,\beta)})$ is a Q-level subnearring of V. That is, $\mu_v(f(x), q) \ge \alpha$ and $v_v(f(x), q) \le \beta$, $\mu_v(f(y), q) \ge \alpha$ and $v_v(f(x), f(y), q) \ge \alpha$, and $v_v(f(x), f(y), q) \le \beta$, $v_v(f(x)f(y), q) \ge \alpha$, $m_v(f(x), f(y), q) \ge \alpha$ and $v_v(f(x)-f(y), q) \le \beta$, $v_v(f(x)f(y), q) \le \beta$. We have to prove that $A_{(\alpha,\beta)}$ is a Q-level subnearring of A. Now, $\mu_A(x, q) = \mu_v(f(x), q) \ge \alpha$, implies that $\mu_A(x, q) \ge \alpha$; $\mu_A(y, q) = \mu_v(f(y), q) \ge \alpha$, and $\mu_A(x-y, q) = \mu_v(f(x)-f(y), q) \ge \alpha$, which implies that $\mu_A(x, q) \ge \alpha$, which implies that $\mu_A(x, q) \ge \alpha$. Also, $\mu_A(xy, q) \ge \alpha$. And, $v_A(x, q) = v_v(f(x), q) \ge \beta$, implies that $v_A(x, q) \le \beta$, implies that $v_A(y, q) \ge \alpha$, $f(x)-f(y), q) \ge \beta$, implies that $v_A(y, q) \le \beta$, and $v_a(x-y, q) = v_v(f(x), q) = v_v(f(x), q) = v_v(f(x), q) \le \beta$, which implies that $v_A(x, q) \le \beta$. Therefore, $\mu_v(f(x)-f(y), q) \le \beta$, which implies that $v_A(x, q) \le \beta$. Therefore, $\mu_v(f(x)-f(y), q) \le \beta$, which implies that $v_A(x, q) \le \beta$. Therefore, $\mu_v(f(x)-f(y), q) \le \beta$, which implies that $v_A(x, q) \le \beta$. And, $v_A(x, q) \le \beta$. Therefore, $\mu_v(f(x)-f(y), q) \le \beta$, which implies that $v_A(x, q) \le \beta$. And, $v_A(x, q) \le \beta$. Therefore, $\mu_v(f(x)-f(y), q) \le \beta$, which implies that $v_A(x, q) \le \beta$. And, $v_A(x, q) \le \beta$. Therefore, $\mu_v(f(x)-f(y), q) \le \beta$, which implies that $v_A(x, q) \le \beta$. And, $v_A(x, q) \le \beta$. Therefore, $\mu_v(f(x)-f(y), q) \le \beta$. And, $v_A(x, q) \le \beta$. Therefore, μ_v

2.11 Theorem: The anti-homomorphic image of a Q-level subnearring of a Q-intuitionistic

L-fuzzy subnearring of a nearring R is a Q-level subnearring of a Q-intuitionistic L-fuzzy subnearring of a nearring R¹.

Proof: Let (R, +, ...) and (R', +, ...) be any two nearrings and $f : R \to R'$ be an anti-homomorphism. That is, f(x + y) = f(y) + f(x) and f(xy) = f(y)f(x), for all x and y in R. Let A be a Q-intuitionistic L-fuzzy subnearring of R and V be the anti-homomorphic image of A under f. Clearly V is a Q-intuitionistic L-fuzzy subnearring of R and V be the anti-homomorphic image of A under f. Clearly V is a Q-intuitionistic L-fuzzy subnearring of R and V be the anti-homomorphic image of A under f. Clearly V is a Q-intuitionistic L-fuzzy subnearring of R'. Let x and y in R and q in Q, implies f(x) and f(y) in R'. Let $A_{(\alpha,\beta)}$ be a Q-level subnearring of A. That is, $\mu_A(x, q) \ge \alpha$ and $\nu_A(x, q) \le \beta$, $\mu_A(y, q) \ge \alpha$ and $\nu_A(y, q) \le \beta$. And, $\mu_A((-y) + x, q) \ge \alpha$, $\mu_A(yx, q) \ge \alpha$ and $\nu_A(y, q) \le \beta$. And, $\mu_A(f(x), q) \ge \alpha$, $\mu_A(y, q) \ge \alpha$, which implies that $\mu_V(f(x), q) \ge \alpha$. Now, $\mu_V(f(x) - f(y), q) \ge \alpha$, which implies that $\mu_V(f(x), q) \ge \alpha$. Also, $\mu_V(f(x)) = \alpha$, which implies that $\mu_V(f(x), q) \ge \alpha$. Also, $\mu_V(f(x)) = \alpha$, and $\nu_V(f(x), q) \ge \alpha$, $\lambda_A(y, q) \le \beta$, which implies that $\nu_V(f(x), q) \le \alpha$. And, $\nu_V(f(x), q) \le \nu_A(x, q) \le \beta$, which implies that $\nu_V(f(y), q) \ge \alpha$. And, $\nu_V(f(y), q) \le \nu_A(x, q) \le \beta$, which implies that $\nu_V(f(y), q) \le \beta$. Now, $\nu_V(f(x) - f(y), q) = \nu_V(f(x) + f(-y), q) = \nu_V(f(-y) + x), q \le \beta$. Now, $\nu_V(f(x) - f(y), q) = \nu_V(f(x) + f(-y), q) = \nu_V(f(-y) + x), q \le \beta$. Now, $\nu_V(f(x) - f(y), q) = \nu_V(f(x) + f(-y), q) = \nu_V(f(-y) + x), q \le \beta$. Nuch implies that $\nu_V(f(x) - f(y), q) \le \beta$. Now, $\nu_V(f(x) - f(y), q) = \nu_V(f(x) + f(-y), q) = \nu_V(f(-y) + x), q \le \beta$. Now, $\nu_V(f(x) - f(y), q) = \nu_V(f(x) + f(-y), q) = \nu_V(f(-y) + x), q \le \beta$. Also,

 $v_{\vee}(f(x) f(y), q) = v_{\vee}(f(yx), q) \leq v_{A}(yx, q) \leq \beta$, which implies that $v_{\vee}(f(x)f(y), q) \leq \beta$. Therefore, $\mu_{\vee}(f(x)-f(y), q) \geq \alpha$, $v_{\vee}(f(x)-f(y), q) \geq \beta$. Hence $f(A_{(\alpha,\beta)})$ is a Q-level subnearring of a Q-intuitionistic L-fuzzy subnearring V of R¹.

2.12 Theorem: The anti-homomorphic pre-image of a Q-level subnearring of a Q-intuitionistic L-fuzzy subnearring of a nearring R¹ is a Q-level subnearring of a Q-intuitionistic L-fuzzy subnearring of a nearring R.

Proof: Let (R, +, .) and (Rⁱ , +, .) be any two nearrings

and f : R \rightarrow R' be an anti-homomorphism. That is, f(x + y) = f(y) + f(x) and f(xy) = f(y)f(x), for all x and y in R. Let V be a Q-intuitionistic L-fuzzy subnearring of a nearring R' and A be the anti-homomorphic pre-image of V under f. Clearly A is a Q-intuitionistic L-fuzzy subnearring of a nearring R. Let f(x) and f(y) in R', implies x and y in R and q in Q. Let f(A_(\alpha, \beta)) be a Q-level subnearring of V. That is, $\mu_v(f(x), q) \ge \alpha$ and $v_v(f(x), q) \ge \alpha$, $\mu_v(f(y)f(x), q) \ge \alpha$ and $v_v(f(y), q) \le \beta$; $\mu_v((-f(y)) + f(x), q) \ge \alpha$, $\mu_v(f(y)f(x), q) \ge \alpha$ and $v_v(-f(y)) + f(x), q) \le \beta$. We have to prove that A_(\alpha, \beta) is a Q-level subnearring of A. Now, $\mu_A(x, q) = \mu_v(f(y), q) \ge \alpha$, which implies that $\mu_A(x, q) \ge \alpha$. Now,

 $\begin{array}{l} \mu_A(x-y,\,q)=\mu_V(\ f(x-y),\,q\)=\mu_V(\ f(-y)+f(x),\,q\)=\mu_V(\ (-f(y))+f(x),\,q\)\geq\alpha, \mbox{ which implies that } \mu_A(x-y,\,q)\geq\alpha. \mbox{ Also, } \mu_A(xy,\,q)=\mu_V(\ f(x),\,q\)=\mu_V(\ f(y)f(x),\,q\)\geq\alpha, \mbox{ which implies that } \mu_A(xy,\,q)\geq\alpha. \mbox{ And, } \nu_A(x,\,q)=\nu_V(\ f(x),\,q\)\leq\beta, \mbox{ which implies that } \nu_A(x,\,q)\leq\beta. \mbox{ and } \nu_A(x,\,q)=\nu_V(\ f(x),\,q\)\leq\beta, \mbox{ which implies that } \nu_A(y,\,q)\leq\beta. \mbox{ and } \nu_A(x,\,q)=\nu_V(\ f(x-y),\,q\)=\nu_V(\ f(-y)+f(x),\,q\)=\nu_V(\ (-f(y))+f(x),\,q\)=\nu_V(\ (-f(y))+f(x),\,q\)=\nu_V(\ (-f(y))+f(x),\,q\)=\nu_V(\ f(y)f(x),\,q\)\leq\beta. \mbox{ which implies that } \nu_A(xy,\,q)\leq\beta. \mbox{ Therefore, } \mu_V(\ f(x)-f(y),\,q\)\leq\beta. \mbox{ and } \nu_A(xy,\,q)\leq\beta. \mbox{ Therefore, } \mu_V(\ f(x)f(y),\,q\)\leq\beta. \mbox{ Hence } A_{(\alpha,\mu)}\ \mbox{ is a } Q-\mbox{ level subnearring of a } Q-\mbox{ intuitionistic } L-\mbox{ fuzzy subnearring } A \ of \ R. \end{array}$

REFERENCES

1. Asok Kumer Ray. (1999).On product of fuzzy subgroups, fuzzy sets and systems. 105, 181-183 ~ 2. Atanassov,K.,& Stoeva.S. (Elsevier Sci. Publ., Amsterdam, 1984). Intuitionistic L-fuzzy sets, Cybernetics and systems research 2. 539-540. ~ 3. Azriel Rosenfeld. (1971). Fuzzy Groups. Journal of mathematical analysis and applications. 35, 512-517 4. Banerjee,B., & Basnet D.K. 2003. Intuitionistic fuzzy subgroups, Fuzzy Sets and Systems. 37, 359-371. 6. De, K., Biswas,R., & Roy,A.R. (1997). On intuitionistic fuzzy subgroups and union of fuzzy subgroups, Fuzzy Sets and Systems. 37, 359-371. 6. De, K., Biswas,R., & Roy,A.R. (1997). On intuitionistic fuzzy sets, Notes on Intuitionistic Fuzzy Sets. 3(4), 7. Goguen.J.A. (1967). L-fuzzy Sets, J. Math. Anal. Appl. 18145-147. 8. Hur,K., Kang, H.W., & Song H.K. (2003). Intuitionistic fuzzy subgroups and subrings. Honam Math. J. 25 (1), 19-41. 9. Palaniappan. N., & Arjunan,K. (2008). The homomorphism, anti homomorphism of a fuzzy ideals of a ring. Varahmihir Journal of Mathematical Sciences. 6(1), 181-006. 10. Palaniappan. N., & Arjunan,K. (2007). Operation on fuzzy ideal fuzzy ideals of a ring. Varahmihir Journal of Mathematical Sciences. 6(1), 181-006. 10. Palaniappan. N., & Arjunan,K. (2007). Operation on fuzzy and anti fuzzy ideals of a ring. Varahmihir Journal of Mathematical Sciences. 6(1), 181-006. 10. Palaniappan. N., & Arjunan,K. (2007). Operation on fuzzy ideal fuzzy ideals of a ring. Varahmihir Journal of Mathematical Sciences. 6(1), 181-006. 10. Palaniappan. N., & Arjunan,K. (2007). Operation on fuzzy ideal fuzzy ideals of near rings,NIFS 15(3), 25-32. 13. Sivaramarkishna das.P.(1981). Fuzzy groups and level subgroups. Journal of Mathematical Analysis and Applications. 84. 264-269. 14. Solairaju.A., & Nagarajan.R.(2009). A New Structure and Construction of O-Fuzzy Groups. Advances in fuzzy mathematics. Volume 4(1), 23-29. 15. Vasantha kandasamy.W.B.(2003). Smarandache fuzzy algebra. American research press. Rehoboth. 16. Zadeh .L.A.(1965). Fuzzy sets. Informatio