Research Paper

Mathematics

Q-Level Subnearring Of Q-Intuitionistic L-Fuzzy Subnearrings

* M.M.Shanmugapriya ** K.Arjunan

* Department of Mathematics, Karpagam University, Coimbatore -641021

** Department of Mathematics, H.H. The Rajah's College, Pudukkottai-622001

ABSTRACT

In this paper, we study some of the properties of Q-level subnearring of Q-intuitionistic L-fuzzy subnearring of a nearring and prove some results on these. 2000 AMS SUBJECT CLASSIFICATION: 03F55, 08A72, 20N25. SUMMARY:

Let A be a Q-intuitionistic L-fuzzy subnearring of a nearring R. Then for α and β in L such that $\alpha \leq \alpha$ A(e, q) and $\beta \geq \nu$ A(e, q), $A_{(\alpha, \beta)}$ is a Q-level subnearring of R and let (R, +, .) be a nearring and A be a Q-intuitionistic L-fuzzy subset of R such that $A_{(\alpha, \beta)}$ be a Q-level subnearring of R. If α and β in L satisfying $\alpha \leq \alpha$ A(e, q) and $\beta \geq \nu$ A(e, q), then A is a Q-intuitionistic L-fuzzy subnearring of R. Also the homomorphic image of a Q-level subnearring of a Q-intuitionistic L-fuzzy subnearring of a nearring R is a Q-level subnearring of a Q-intuitionistic L-fuzzy subnearring of a nearring R.

Keywords: (Q,L)-fuzzy subset, Q-intuitionistic L-fuzzy subset, Q-intuitionistic L-fuzzy subnearring, Q-level subset.

INTRODUCTION.

After the introdution of fuzzy sets by L.A.Zadeh[16], several researchers explored on the generalization of the notion of fuzzy set. The concept of intuitionistic L-fuzzy subset was introduced by K.T.Atanassov[2], as a generalization of the notion of fuzzy set. Azriel Rosenfeld[3] defined a fuzzy groups. Asok Kumer Ray[1] defined a product of fuzzy subgroups and A.Solairaju and R.Nagarajan[14] have introduced and defined a new algebraic structure called Q-fuzzy subgroups. We introduce the concept of Q-level subnearring of Q-intuitionistic L-fuzzy subnearring of a nearring and established some results.

1.PRELIMINARIES:

1.1 Definition: Let X be a non-empty set and L = (L, \le) be a lattice with least element 0 and greatest element 1 and Q be a non-empty set. A (Q, L)-fuzzy subset A of X is a function

 $A: XxQ \rightarrow L$.

1.2 Definition: Let (L, \leq) be a complete lattice with an involutive order reversing operation N : L \rightarrow L and Q be a non-empty set. A Q-intuitionistic L-fuzzy subset (QILFS) A in X is defined as an object of the form A={< (x, q), μ A(x, q), ν A(x, q) > / x in X and q in Q },

where μ A: XxQ \rightarrow L and ν A: XxQ \rightarrow L define the degree of membership and the degree of non-membership of the element x \in X respectively and for every x \in X and q in Q satisfying μ A(x, q) \leq N(ν A(x, q)).

1.3 Definition: Let (R, +, .) be a nearring. A Q-intuitionistic L-fuzzy subset A of R is said to be a Q-intuitionistic L-fuzzy subnearring(QILFSNR) of R if it satisfies the following axioms:

- (i) $\mu A(x y, q) \ge \mu A(x, q) \wedge \mu A(y, q)$
- (ii) $\mu A(xy, q) \ge \mu A(x, q) \wedge \mu A(y, q)$
- (iii) $\vee A(x-y, q) \leq \vee A(x, q) \vee \vee A(y, q)$
- (iv) $v A(xy, q) \le v A(x, q) \lor v A(y, q)$, for all x and y in R and q in Q.

1.4 Definition: Let X and X' be any two sets. Let $f: X \to X'$ be any function and A be a Q-intuitionistic L-fuzzy subset in X, V be a Q-intuitionistic L-fuzzy subset in f(X) = X', defined by μ V(y, q) = $\sup_{x \to T(y)} \mu$ A(x, q) and ν V(y, q) = $\inf_{x \to T(y)} \nu$ A(x, q), for all x in X and y in X'. A is called a preimage of V under f and is denoted by f-1(V).

1.5 Definition: Let A be a Q-intuitionistic L-fuzzy subset of X. For α and β in L, a Q-level subset of A corresponding to α , β is the set A $_{(\alpha-\beta)}$ = { $x \in X : \mu$ A(x, q) $\geq \alpha$ and ν A(x, q) $\leq \beta$ }.

2.- Q-LEVEL SUBNEARRING OF Q-INTUITIONISTIC L-FUZZY

SUBNEARRINGS OF R

2.1 Theorem: Let A be a Q-intuitionistic L-fuzzy subnearring of a nearring R. Then for α and β in L such that $\alpha \leq \mu$ A(e, q) and $\beta \geq \nu$ A(e, q), A(α , β) is a Q-level subnearring of R.

Proof : For all x and y in A(α , β), we have, μ A(x, q) $\geq \alpha$ and ν A(x, q) $\leq \beta$ and μ A(y, q) $\geq \alpha$ and ν A(y, q) $\leq \beta$. Now, μ A(x - y, q) $\geq \mu$ A(x, q) $\wedge \mu$ A(y, q) $\geq \alpha \wedge \alpha = \alpha$, which implies that,

 $\begin{array}{l} \mu\:A(x-y,q)\geq\alpha\:.\:And,\;\mu\:A(xy,q)\geq\mu\:A(x,q)\land\mu\:A(y,q)\geq\alpha\:\land\\ \alpha=\alpha\:,\;\text{which implies that,}\;\;\mu\:A(xy,q)\geq\alpha\:.\:And\;also,\;\;v\:A(x-y,q)\leq v\:A(x,q)\lor\;\;v\:A(y,q)\leq\beta\:\lor\;\beta=\beta\:,\;\text{which implies that,}\;\;v\:A(x-y,q)\leq\beta\:.\:And,\;\;v\:A(xy,q)\leq v\:A(x,q)\lor\;v\:A(y,q)\leq\beta\:\lor\;A(x,q)\lor\;v\:A(y,q)\leq\beta\:\lor\;A(x,q)\lor\;v\:A(y,q)\leq\beta\:\lor\;A(x,q)\lor\;v\:A(y,q)\leq\beta\:.\:Therefore,\;\;\mu\:A(x-y,q)\geq\alpha\:\:\text{and}\;\;v\:A(x-y,q)\leq\beta\:\:\text{and}\;\;\mu\:A(xy,q)\geq\alpha\:\:\text{and}\;\;v\:A(xy,q)\leq\beta\:.\:We\;get,\;x-y\:and\;xy\:in\:A_{(\alpha,\beta)}^{}.\:Hence\:A_{(\alpha,\beta)}^{}\:is\:a\:Q-level subring of the nearring R. \end{array}$

2.2 Theorem: Let A be a Q-intuitionistic L-fuzzy subnearring of a nearring R. Then two Q-level subnearrings A $_{(\alpha 1, \beta 1)}$, A $_{(\alpha 2, \beta 2)}$ and α ₁, α ₂, β ₃, β ₂ in L and α 1 \leq μ A(e, q), α 2 \leq μ A(e, q) and β 1 \geq ν A(e, q), β 2 \geq ν A(e, q) with α 2 < α 1 and β 1 < β 2 of A are equal if and only if there is no x in R such that α 1 > μ A(x, q) > α 2 and β 1 < ν A(x, q) < β 2.

Proof : Assume that $A_{(\alpha_1, \, \beta_1)} = A_{(\alpha_2, \, \beta_2)}$. Suppose there exists x in R such that α 1 > μ A(x, q) > α 2 and β 1 < ν A(x, q) < β 2. Then $A_{(\alpha_1, \, \beta_1)} \subseteq A_{(\alpha_2, \, \beta_2)}$ implies x belongs to $A_{(\alpha_2, \, \beta_2)}$, but not in

 $A_{(\alpha 1, \beta 1)}$. This is contradiction to $A_{(\alpha 1, \beta 1)} = A_{(\alpha 2, \beta 2)}$.

Therefore there is no x in R such that α 1 > μ A(x, q) > α 2 and β 1 < ν A(x, q) < β 2. Conversely, if there is no x in R such that α 1 > μ A(x, q) > α 2 and β 1 < ν A(x, q) < β 2. Then A_(α 1, β 1) = A_(α 2, β 2).

2.3 Theorem: Let (R, +, .) be a nearring and A be a Q-intuitionistic L-fuzzy subset of R such that A($\alpha,~\beta$) be a Q-level subnearring of R. If α and β in L satisfying $\alpha \leq \mu$ A(e, q) and $\beta \geq \nu$ A(e, q), then A is a Q-intuitionistic L-fuzzy subnearring of R.

Proof: Let (R, +, .) be a nearring and x, y in R. Let $\,\mu$ A(x, q) = $\,\alpha$ 1 and $\,\mu$ A(y, q) = $\,\alpha$ 2 , $\,\nu$ A(x, q) = $\,\beta$ 1 and $\,\nu$ A(y, q) = $\,\beta$ 2.

Case (i): If α 1 < α 2 and β 1 > β 2, then $x, y \in A_{(\alpha 1, \beta 1)}$. As $A_{(\alpha 2, \beta 2)}$ is a Q-level subnearring of R, we get x-y and xy in . Now, μ A(x-y, q) $\geq \alpha$ 1 = α 1 \wedge α 2 = μ A(x, q) \wedge μ A(y, q), which implies that μ A(x-y, q) $\geq \mu$ A(x, q) \wedge μ A(y, q), for all x and y in R. Also, μ A(x, y, q) $\geq \alpha$ 1 = α 1 \wedge α 2 = μ A(x, q) \wedge μ A(y, q), which implies that μ A(x, y, q) $\geq \mu$ A(x, q) \wedge μ A(y, q), for all x and y in R. And, v A(x-y, q) $\leq \mu$ 1 = μ B 1 \wedge μ B 2 = μ A(x, q) \wedge μ A(x, q), which implies that μ A(x, q) \wedge μ

Case (ii): If α 1 < α 2 and β 1 < β 2, then $x, y \in A_{(\alpha 1, \beta 1)}$. As $A_{(\alpha 2, \beta 2)}$ is a Q-level subnearring of R, we have x-y and xy in $A_{(\alpha 1, \beta 1)}$. Now, μ A(x-y, q) \geq α 1 = α 1 \wedge α 2 = μ A(x, q) \wedge μ A(y, q), which implies that μ A(x-y, q) \geq μ A(x, q) \wedge μ A(y, q), for all x and y in R. Also, μ A(xy, q) \geq α 1 = α 1 \wedge α 2 = μ A(x, q) \wedge μ A(y, q), which implies that μ A(xy, q) \geq μ A(x, q) \wedge μ A(y, q), for all x and y in R. And, ν A(x-y, q) \leq β 2 = β 2 \vee β 1 = ν A(y, q) \vee ν A(x, q), which implies that ν A(x-y, q) \leq γ A(x, q) \vee γ A(y, q), for all x and y in R. Also, γ A(xy, q) \leq γ A(x, q) γ A(x, q) γ A(y, q), for all x and y in R.

Case (iii): If α 1 > α 2 and β 1 > β 2, then x, $y \in A_{(\alpha^1, \, \beta^1)}$. As $A_{(\alpha^2, \, \beta^2)}$ is a Q-level subnearring of R, we have x -y and xy \in $A_{(\alpha^1, \, \beta^1)}$. Now, μ A(x-y, q) \geq α 2 = α 2 \wedge α 1 = μ A(y, q) \wedge μ A(x, q), which implies that μ A(x-y, q) \geq μ A(x, q) \wedge μ A(y, q), for all x and y in R. Also, μ A(xy, q) \geq α 2 = α 2 \wedge α 1 = μ A(y, q) \wedge μ A(x, q), which implies that μ A(xy, q) \geq μ A(x, q) \wedge μ A(y, q), for all x and y in R. And, A(x-y, q) \leq μ A(x-y, q) \leq μ A(x, q) \vee ν A(y, q), which implies that ν A(x-y, q) \leq ν A(x, q) \vee ν A(y, q), which implies that ν A(x-y, q) \leq μ A(x, q) \vee ν A(x, q) \vee ν A(x, q) \vee ν A(y, q), which implies that ν A(xy, q) \leq ν A(x, q) \vee ν A(y, q), for all x and y in R.

Case (iv): If α 1 > α 2 and β 1 < β 2, then x, y \in A $_{(\alpha 1, \ \beta 1)}$. As A $_{(\alpha 2, \ \beta 2)}$ is a Q-level subnearring of R, we have x–y and xy in A $_{(\alpha 1, \ \beta 1)}$. Now, μ A(x–y, q) \geq α 2 = α 2 \wedge α 1= μ A(y, q) \wedge μ A(x, q), which implies that μ A(x–y, q) \geq μ A(x, q) \wedge μ A(y, q), for all x and y in R.

Also, μ A(xy, q) $\geq \alpha$ 2 = α 2 $\wedge \alpha$ 1 = μ A(y, q) $\wedge \mu$ A(x, q), which implies that μ A(xy, q) $\geq \mu$ A(x, q) $\wedge \mu$ A(y, q), for all x and y in R. And, ν A(x-y, q) $\leq \beta_2$ = $\beta_2 \vee \beta_1$ = ν A(y, q) $\vee \nu$ A(x, q), which implies that ν A(x-y, q) $\leq \nu$ A(x, q) $\vee \nu$ A(y, q), for all x and y in R. Also, ν A(xy, q) $\leq \beta_2$ = $\beta_2 \vee \beta_1$ = ν A(y) $\vee \nu$ A(x), which implies that ν A(xy, q) $\leq \nu$ A(x, q) $\vee \nu$ A(y, q), for all x and y in R.

Case (v): If $\alpha_1 = \alpha_2$ and $\beta_1 = \beta_2$. It is trivial.

In all the cases, A is a Q-intuitionistic L-fuzzy subnearring of the nearring ${\sf R}.$

2.4 Theorem: Let A be a Q-intuitionistic L-fuzzy subnearring of a nearring R. If any two Q-level subnearrings of A belongs to R, then their intersection is also Q-level subnearring of A in R.

Proof : Let α_1 , α_2 , β_1 , $\beta_2 \in L$ and $\alpha_1 \le \mu A(e, q)$, $\alpha_2 \le \mu A(e, q)$

q) and $\beta_1 \ge v A(e, q)$, $\beta_2 \ge v A(e, q)$.

Case (i): If α 1< μ A(x, q) < α 2 and β 1> ν A(x, q) > β 2, then $A_{(\alpha \, 1, \, \beta \, 1)} \subseteq A_{(\alpha \, 2, \, \beta \, 2)}$.

Therefore, $A_{(\alpha 1, \ \beta 1)} \cap A_{(\alpha 2, \ \beta 2)} = A_{(\alpha 2, \ \beta 2)}$, but $A_{(\alpha 1, \ \beta 1)}$ is a Q-level subnearring of A.

Case (ii): If $\alpha_1 > \mu$ A(x, q)> α_2 and $\beta_1 < \nu$ A(x, q) < β_2 , then $A_{(\alpha_1, \beta_1)} \subseteq A_{(\alpha_2, \beta_2)}$.

Therefore, $A_{(\alpha 1, \ \beta 1)} \cap A_{(\alpha 2, \ \beta 2)} = A_{(\alpha 1, \ \beta 1)}$, but $A_{(\alpha 1, \ \beta 1)}$ is a Q-level subnearring of A.

Case (iii): If $\alpha_1 < \mu A(x, q) < \alpha_2$ and $\beta_1 < \nu A(x, q) < \beta_2$, then $A_{(\alpha 2, \beta 1)} \subseteq A_{(\alpha 1, \beta 2)}$.

Therefore, $A_{(\alpha^2,\ \beta^1)} \cap A_{(\alpha^1,\ \beta^2)} = A_{(\alpha^2,\ \beta^1)},$ but $A_{(\alpha^2,\ \beta^1)}$ is a Q-level subnearing of A.

Case (iv): If α_1 > $\mu_{\rm A}({\bf x},\,{\bf q})$ > α_2 and β_1 > $\nu_{\rm A}({\bf x},\,{\bf q})$ > β_2 , then $A_{(\alpha_1,\beta_2)}$

 $\subseteq A_{(\alpha_2,\beta_1)}$.

Therefore, $A_{(\alpha_1,\beta_2)}\cap A_{(\alpha_2,\beta_1)}$ = $A_{(\alpha_1,\beta_2)}$, but $A_{(\alpha_1,\beta_2)}$ is a Q-

level subnearring of A.

Case (v): If α_1 = α_2 and β_1 = β_2 , then $A_{(\alpha_1,\beta_1)}$ = $A_{(\alpha_2,\beta_2)}$

In all cases, intersection of any two Q-level subnearrings is a Q-level subnearring of A.

2.5 Theorem: Let A be a Q-intuitionistic L-fuzzy subnearring of a nearring R. If α_i , $\beta_i \in L$, $\alpha_i \leq \mu_A(e, q)$ and $\beta_j \geq \nu_A(e, q)$ and $A_{(\alpha_i,\beta_j)}$, i, j \in I is a collection of Q-level subnearrings of A, then

their intersection is also a Q-level subnearring of A.

Proof: It is trivial.

2.6 Theorem: Let A be a Q-intuitionistic L-fuzzy subnearring of a nearring R. If any two Q-level subnearrings of A belongs to R, then their union is also a Q-level subnearring of A in R.

Proof : Let α_1 , α_2 , β_1 , β_2 \in L and α_1 $\leq \mu_A$ (e, q), α_2 $\leq \mu_A$ (e, q) and $\beta_1 \geq \nu_A$ (e, q), $\beta_2 \geq \nu_A$ (e, q).

Case (i): If $\alpha_1 < \mu_A(\mathbf{x}, \mathbf{q}) < \alpha_2$ and $\beta_1 > \nu_A(\mathbf{x}, \mathbf{q}) > \beta_2$, then $A_{(\alpha_2, \beta_2)} \subseteq A_{(\alpha_1, \beta_1)}$.

Therefore, $A_{(\alpha_1,\beta_1)}\cup A_{(\alpha_2,\beta_2)}$ = $A_{(\alpha_1,\beta_1)}$, but $A_{(\alpha_1,\beta_1)}$ is a Q-level subnearring of A.

Case (ii): If $\alpha_1 > \mu_A(\mathbf{x}, \mathbf{q}) > \alpha_2$ and $\beta_1 < \nu_A(\mathbf{x}, \mathbf{q}) < \beta_2$, then $A_{(\alpha_1, \beta_1)} \subseteq A_{(\alpha_2, \beta_2)}$.

Therefore, $A_{(\alpha_1,\beta_1)}\cup A_{(\alpha_2,\beta_2)}=A_{(\alpha_2,\beta_2)}$, but $A_{(\alpha_2,\beta_2)}$ is a Q-level subnearring of A.

Case (iii): If $\alpha_1 < \mu_{\rm A}({\bf x},{\bf q}) < \alpha_2$ and $\beta_1 < \nu_{\rm A}({\bf x},{\bf q}) < \beta_2$, then $A_{(\alpha_2,\beta_1)}$

 $\subseteq A_{(\alpha_1,\beta_2)}$.

Therefore, $A_{(\alpha_2,\beta_1)}\cup A_{(\alpha_1,\beta_2)}$ = $A_{(\alpha_1,\beta_2)}$, but $A_{(\alpha_1,\beta_2)}$ is

a Q-level subnearring of A.

Case (iv): If $\alpha_1 > \mu_A(x, q) > \alpha_2$ and $\beta_1 > \nu_A(x, q) > \beta_2$, then $A_{(\alpha_1, \beta_2)}$

$$\subseteq A_{(\alpha_1,\beta_1)}$$
.

Therefore, $A_{(\alpha_1,\beta_2)}\cup A_{(\alpha_2,\beta_1)}$ = $A_{(\alpha_2,\beta_1)}$, but $A_{(\alpha_2,\beta_1)}$ is

a Q-level subnearring of A.

Case (v): If
$$\alpha_1 = \alpha_2$$
 and $\beta_1 = \beta_2$, then $A_{(\alpha_1,\beta_1)} = A_{(\alpha_2,\beta_2)}$.

In all cases, union of any two Q-level subnearrings is a Q-level subnearring of A.

2.7 Theorem: Let A be a Q-intuitionistic L-fuzzy subnearring of a nearring R. If α_i , $\beta_j \in L$, $\alpha_i \leq \mu_A(e, q)$ and $\beta_j \geq \nu_A(e, q)$ and $A_{(\alpha_i, \beta_j)}$, i, j \in I is a collection of Q-level subnearrings of A,

then their union is also a Q-level subnearring of A.

Proof: It is trivial.

2.8 Theorem: Any subnearring H of a nearring R can be realized as a Q-level subnearring of some Q-intuitionistic L-fuzzy subnearring of R.

Proof: Let A be the Q-intuitionistic L-fuzzy subset of a nearring R defined by

$$\mu_{\mathtt{A}}(\mathsf{x},\,\mathsf{q})$$
 = α if $\mathsf{x}\in\mathsf{H},\,0<\alpha\leq 1$

0 if $x \notin H$, and

 $v_{\Delta}(x, q) = \beta \text{ if } x \in H, 0 < \beta \leq 1$

0 if $x \notin H$,

and $\alpha + \beta \le 1$, where H is subnearring of a nearring R.

We claim that A is a Q-intuitionistic L-fuzzy subring of a near-ring R.

Let x and y in R. If x and y in H, then x–y and xy in H, since H is a subnearring of R, we have $\mu_{A}(x-y,q)=\alpha,\,\mu_{A}(x,q)=\alpha,\,\mu_{A}(x,q)=\alpha$ and $v_{A}(x-y,q)=\beta,\,v_{A}(x,q)=\beta,\,v_{A}(y,q)=\beta,\,v_{A}(x,q)=\beta,\,v_{A}(y,q)=\beta,\,v_{A}(x,q)=\beta,\,v_{A}(x,q)=\beta,\,v_{A}(x,q)=\beta,\,v_{A}(x,q)=\beta,\,v_{A}(x,q)=\beta,\,v_{A}(x,q)=\beta,\,v_{A}(x,q)=\beta,\,v_{A}(x,q)=\beta,\,v_{A}(x,q)=\beta,\,v_{A}(x,q)=\beta,\,v_{A}(x,q)=\beta,\,v_{A}(x,q)=\beta,\,v_{A}(x,q)=\gamma,\,v_{A}(x$

2.9 Theorem: The homomorphic image of a Q-level subnearring of a Q-intuitionistic L-fuzzy subnearring of a nearring R is a Q-level subnearring of a Q- intuitionistic L-fuzzy subnearring of a nearring R¹.

Proof: Let (R,+,..) and (R',+,..) be any two nearrings and $f:R\to R'$ be a homomorphism. That is, f(x+y)=f(x)+f(y) and f(xy)=f(x)f(y), for all x and y in R. Let A be a Q-intuitionistic L-fuzzy subnearring of a nearring R and V be the homomorphic image of A under f. Clearly V is a Q-intuitionistic L-fuzzy subnearring of a nearring R'. Let x and y in R and q in Q, implies f(x) and f(y) in R' and $A_{(\alpha,\beta)}$ be a Q-level subnearring of A. That is, $\mu_A(x,q) \ge \alpha$ and $v_A(x,q) \le \beta$; $\mu_A(x-y,q) \ge \alpha$, $\mu_A(xy,q) \ge \alpha$ and $v_A(x,q) \ge \alpha$, $\mu_A(xy,q) \ge \alpha$ and $\nu_A(x-y,q) \le \beta$. We have to prove that $f(A_{(\alpha,\beta)})$ is a Q-level subnearring of V. Now, $\mu_V(f(x),q) \ge \mu_A(x,q) \ge \alpha$, which implies that $\mu_V(f(x),q) \ge \alpha$; and $\mu_V(f(y),q) \ge \mu_A(y,q) \ge \alpha$, which implies that $\mu_V(f(y),q) \ge \alpha$ and $\mu_V(f(x)-f(y),q) \ge \alpha$. Also, $\mu_V(f(x)f(y),q) \ge \alpha$, which implies that $\mu_V(f(x),q) \ge \alpha$, which implies that $\mu_V(f(x),q) \ge \alpha$. And, $\nu_V(f(x),q) \ge \alpha$, which implies that $\mu_V(f(x),q) \ge \alpha$. And, $\nu_V(f(y),q) \le \nu_A(x,q) \le \beta$, which implies that $\nu_V(f(y),q) \le \alpha$. And, $\nu_V(f(y),q) \le \nu_A(y,q) \le \beta$, which implies that $\nu_V(f(y),q) \le \beta$. $V_V(f(y),q) \le \gamma_V(f(y),q) \le \beta$. Also, $V_V(f(y),q) \le \beta$, which implies that $V_V(f(y),q) \ge \nu_V(f(x),q) \le \beta$. Also, $V_V(f(x),f(y),q) = V_V(f(xy),q) \le \beta$. Also, $V_V(f(x),f(y),q) = V_V(f(xy),q) \le \beta$. Also, $V_V(f(x),f(y),q) = V_V(f(xy),q) \le \beta$.

 $v_A(xy,q) \le \beta$, which implies that $v_V(f(x)f(y),q) \le \beta$. Therefore, $\mu_V(f(x)-f(y),q) \ge \alpha$,

 $\begin{array}{l} \nu_{_{V}}(\ f(x)-f(y),\ q\) \leq \beta,\ \mu_{_{V}}(\ f(x)f(y),\ q\) \geq \alpha \ \text{and}\ \nu_{_{V}}(\ f(x)f(y),\ q\) \leq \beta. \\ \text{Hence}\ f\ (A_{_{(\alpha,\ \beta)}}\) \ \text{is a Q-level subnearring of a Q-intuitionistic} \\ \text{L-fuzzy subnearring V of } R^{!}. \end{array}$

2.10 Theorem: The homomorphic pre-image of a Q-level subnearring of a Q-intuitionistic

L-fuzzy subnearring of a nearring R^I is a Q-level subnearring of a Q-intuitionistic L-fuzzy subnearring of a nearring R.

Proof: Let (R, +, .) and (R', +, .) be any two nearrings and $f: R \to R'$ be a homomorphism. That is, f(x + y) = f(x) + f(y) and f(xy) = f(x)f(y), for all x and y in R. Let V be a Q-intuitionistic L-fuzzy subnearring of a nearring R' and A be a homomorphic pre-image of V under f. Clearly A is a Q-intuitionistic L-fuzzy subnearring of the nearring R. Let f(x) and f(y) in R', implies x and y in R and q in Q. Let $f(A_{(\alpha,\beta)})$ is a Q-level subnearring of V. That is, $\mu_V(f(x), q) \ge \alpha$ and $\nu_V(f(x), q) \le \beta$; $\mu_V(f(y), q) \ge \alpha$, $\mu_V(f(y), q) \le \beta$; $\mu_V(f(y), q) \ge \alpha$ and $\nu_V(f(y), q) \le \beta$; $\mu_V(f(y), q) \le \beta$; $\mu_V(f(x), f(y), q) \le \alpha$. We have to prove that $A_{(\alpha,\beta)}$ is a Q-level subnearring of A. Now, $\mu_A(x,q) = \mu_V(f(x), q) \ge \alpha$, implies that $\mu_A(x,q) \ge \alpha$; $\mu_A(y,q) = \mu_V(f(y), q) \ge \alpha$, which implies that $\mu_A(x-y,q) = \mu_V(f(x-y), q) = \mu_V(f(x)-f(y), q) \ge \alpha$, which implies that $\mu_A(x-y,q) \ge \alpha$. Also, $\mu_A(xy,q) = \mu_V(f(x), q) \ge \alpha$, which implies that $\mu_A(x,q) = \mu_V(f(x), q) \ge \alpha$, which implies that $\mu_A(x,q) = \mu_V(f(x), q) \ge \alpha$, which implies that $\mu_A(x,q) = \mu_V(f(x), q) \ge \alpha$, implies that $\mu_A(x,q) \ge \alpha$. And, $\mu_A(x,q) = \mu_V(f(x), q) \ge \alpha$, implies that $\mu_A(x,q) \ge \alpha$, $\mu_A(x,q) = \mu_V(f(x), q) \ge \beta$, implies that $\mu_A(x,q) \le \beta$, $\mu_A(x,q) = \mu_V(f(x), q) \ge \beta$, $\mu_A(x,q) \le \beta$. And, $\mu_A(x,q) = \mu_V(f(x), q) \ge \beta$, which implies that $\mu_A(x,q) \ge \beta$. Therefore, $\mu_V(f(x), q) \le \beta$, which implies that $\mu_A(x,q,q) \ge \beta$, $\mu_V(f(x), q) \le \beta$. Therefore, $\mu_V(f(x), q) \le \beta$, $\mu_V(f(x), q) \le \beta$. Hence, $\mu_V(f(x), q) \le \beta$. Hence, $\mu_V(f(x), q) \le \beta$.

2.11 Theorem: The anti-homomorphic image of a Q-level subnearring of a Q-intuitionistic

L-fuzzy subnearring of a nearring R is a Q-level subnearring of a Q-intuitionistic L-fuzzy subnearring of a nearring R!.

Proof: Let (R, +, ...) and $(R^l, +, ...)$ be any two nearrings and $f: R \to R^l$ be an anti-homomorphism. That is, f(x + y) = f(y) + f(x) and f(xy) = f(y)f(x), for all x and y in R. Let A be a Q-intuitionistic L-fuzzy subnearring of R and V be the anti-homomorphic image of A under A. Clearly A is a A-intuitionistic L-fuzzy subnearring of A. Let A and A in A and A in A, implies A in A in

 $\begin{array}{l} v_{\vee}(\ f(x)\ f(y),\ q\) = v_{\vee}(\ f(yx\),\ q) \leq v_{_{A}}(yx,\ q) \leq \beta,\ \text{which implies that}\\ v_{\vee}(\ f(x)f(y),\ q\) \leq \beta.\ \ \text{Therefore,}\ \ \mu_{\vee}(\ f(x)-f(y),\ q\) \geq \alpha\ ,\ v_{\vee}(\ f(x)-f(y),\ q\) \leq \beta,\ \ \text{Hence}\\ f(y),\ q\) \leq \beta\ \ \text{and}\ \ \mu_{\vee}(\ f(x)f(y),\ q\) \geq \alpha,\ v_{\vee}(\ f(x)f(y),\ q\) \leq \beta.\ \ \text{Hence}\\ f(A_{(\alpha,\ \beta)})\ \ \text{is a Q-level subnearring of a Q-intuitionistic L-fuzzy subnearring V of R^1.} \end{array}$

2.12 Theorem: The anti-homomorphic pre-image of a Q-level subnearring of a Q-intuitionistic L-fuzzy subnearring of a nearring R¹ is a Q-level subnearring of a Q-intuitionistic L-fuzzy subnearring of a nearring R.

Proof: Let (R, +, .) and (R $^{\scriptscriptstyle |}$, +, .) be any two nearrings

and $f:R\to R^{\scriptscriptstyle |}$ be an anti-homomorphism. That is, f(x+y)=f(y)+f(x) and f(xy)=f(y)f(x), for all x and y in R. Let V be a Q-intuitionistic L-fuzzy subnearring of a nearring $R^{\scriptscriptstyle |}$ and A be the anti-homomorphic pre-image of V under f. Clearly A is a Q-intuitionistic L-fuzzy subnearring of a nearring R. Let f(x) and f(y) in $R^{\scriptscriptstyle |}$, implies x and y in R and q in Q. Let $f(A_{(\alpha,\beta)})$ be a Q-level subnearring of V. That is, $\mu_{v}(f(x), q) \geq \alpha$ and $v_{v}(f(y), q) \geq \alpha$ and $v_{v}(f(y), q) \leq \beta$; $\mu_{v}(f(y), f(x), q) \geq \alpha$ and $v_{v}(f(y))+f(x), q) \leq \beta$, $v_{v}(f(y)f(x), q) \leq \alpha$ and $v_{v}(f(y))+f(x), q) \leq \beta$. We have to prove that $A_{(\alpha,\beta)}$ is a Q-level subnearring of A. Now, $\mu_{A}(x,q) = \mu_{v}(f(y), q) \geq \alpha$, which implies that $\mu_{A}(x,q) \geq \alpha$. Now, $\mu_{A}(y,q) = \mu_{v}(f(y), q) \geq \alpha$, which implies that $\mu_{A}(y,q) \geq \alpha$. Now,

 $\begin{array}{l} \mu_{A}(x-y,\,q)=\mu_{V}(\;f(x-y),\,q\;)=\mu_{V}(\;f(-y)+f(x),\,q\;)=\mu_{V}(\;(-f(y))+f(x),\,q\;)\geq\alpha, \mbox{ which implies that } \mu_{A}(x-y,\,q)\geq\alpha. \mbox{ Also, } \mu_{A}(xy,\,q\;)=\mu_{V}(\;f(xy),\,q\;)=\mu_{V}(\;f(y)f(x),\,q\;)\geq\alpha, \mbox{ which implies that } \mu_{A}(xy,\,q)=\mu_{V}(\;f(x),\,q\;)\geq\beta, \mbox{ which implies that } \nu_{A}(x,\,q)\geq\alpha. \mbox{ And, } \nu_{A}(x,\,q)=\nu_{V}(\;f(x),\,q\;)\leq\beta, \mbox{ which implies that } \nu_{A}(y,\,q)\leq\beta \mbox{ and } \nu_{A}(\;x-y,\,q)=\nu_{V}(\;f(x-y),\,q\;)=\nu_{V}(\;f(-y)+f(x),\,q\;)=\nu_{V}(\;(-f(y))+f(x),\,q\;)\leq\beta, \mbox{ which implies that } \nu_{A}(xy,\,q)=\nu_{V}(\;f(xy),\,q\;)=\nu_{V}(\;f(xy),\,q\;)\leq\beta, \mbox{ which implies that } \nu_{A}(xy,\,q)\leq\beta, \mbox{ Therefore, } \mu_{V}(\;f(y)f(x),\,q\;)\leq\beta, \mbox{ which implies that } \nu_{A}(xy,\,q)\leq\beta, \mbox{ Therefore, } \mu_{V}(\;f(x)-f(y),\,q\;)\leq\beta, \mbox{ Hence } A_{(\alpha,\,\beta)} \mbox{ is a Q-level subnearring of a Q-intuitionistic L-fuzzy subnearring A of R.} \label{eq:partial_polar_pol$

REFERENCES

1. Asok Kumer Ray. (1999).On product of fuzzy subgroups, fuzzy sets and systems. 105, 181-183 ~ 2. Atanassov,K.,& Stoeva.S. (Elsevier Sci. Publ., Amsterdam, 1984). Intuitionistic L-fuzzy sets, Oybernetics and systems research 2. 539-540. ~ 3. Azriel Rosenfeld. (1971). Fuzzy Groups. Journal of mathematical analysis and applications. 35, 512-517 4. Banerjee,B., & Basnet D.K. 2003. Intuitionistic fuzzy subrings and ideals, J.Fuzzy Math.11(1). 139-155, 5. Dixit.V.N., Rajesh Kumar & Naseem Ajmal. (1990). Level subgroups and union of fuzzy subgroups, Fuzzy Sets and Systems. 37, 359-371. 6. De, K., Biswas.R., & Roy.A.R. (1997). On intuitionistic fuzzy sets, Notes on Intuitionistic Fuzzy Sets, 3(4), 7. Goguen.J.A. (1967). L-fuzzy Sets, J. Math. Anal. Appl. 18145-147. 8. Hur.K., Kang. H.W., & Song H.K. (2003). Intuitionistic fuzzy subgroups and subrings. Honam Math. J. 25 (1), 19-41. 9. Palaniappan. N., & Arjunan.K. (2008). The homomorphism of a fuzzy and an antifuzzy ideals of a ring. Varahmihir Journal of Mathematical Sciences. 6(1), 181-006. 10. Palaniappan. N., & Arjunan.K. (2007). Operation on fuzzy and antifuzzy ideals. Antartica J. Math. 4(1), 59-64.11. Rajesh Kumar. (1991). Fuzzy irreducible ideals in rings, Fuzzy Sets and Systems. 42, 369-379. 12. RatnabalaDevi.O. (2009). On the intuitionistic O-Fuzzy Ideals of near rings,NIFS 15(3), 25-32. 13. Sivaramakrishna das.P.(1981). Fuzzy groups and level subgroups. Journal of Mathematical Analysis and Applications. 84. 264-269. 14. Solairaju.A., & Nagarajan.R.(2009). A New Structure and Construction of Q-Fuzzy Groups. Advances in fuzzy mathematics. Volume 4(1), 23-29. 15. Vasantha kandasamy.W.B.(2003). Smarandache fuzzy algebra. American research press. Rehoboth. 16. Zadeh .L.A.(1965). Fuzzy sets. Information and control. 8, 338-353.