## Notes on (Q, L) - Fuzzy Subgroups of A Group

## S. Sahaya Arockia Selvi ** K. Arjunan

## * Department of Mathematics, St.Michael College of Engineering \& Technology, Kalayarkoil-630551, Tamilnadu, India.

** Department of Mathematics, H.H.The Rajahs College, Pudukkottai - 622001 Tamilnadu, India.

## ABSTRACT

In this paper, we study some of the properties of $(Q, L)$-fuzzy subgroup of a group and prove some results on these. 2000 Ams Subject Classification : 03F55, 08A72, $20 N 25$.

## Keywords : $(Q, L) \cdot$ fuzzy subset, $(Q, L)$-fuzzy subgroup, $(Q, L)$-fuzzy relation, Product of $(Q, L)$ - fuzzy subsets.

## INTRODUCTION:

After the introdution of fuzzy sets by L.A.Zadeh[19], several researchers explored on the generalization of the notion of fuzzy set. Azriel Rosenfeld[4] defined a fuzzy groups. Asok Kumer Ray[3] defined a product of fuzzy subgroups and A.Solairaju and R.Nagarajan[16, 17, 18] have introduced and defined a new algebraic structure called Q-fuzzy subgroups. We introduce the concept of (Q, L)-fuzzy subgroup of a group and established some results.

## 1.PRELIMINARIES:

### 1.1 Definition:

Let $X$ be a non-empty set and $L=(L, \leq)$ be a lattice with least element 0 and greatest element 1 and $Q$ be a non-empty set. $A(Q, L)$-fuzzy subset $A$ of $X$ is a function $A: X x Q \rightarrow L$.

### 1.2 Definition:

Let ( $G,+$ ) be a group and $Q$ be a non empty set. $A(Q, L)$ fuzzy subset $A$ of $G$ is said to be a ( $Q, L$ ) - fuzzy subgroup (QLFSS) of $G$ if the following conditions are satisfied:
(i) $\mathrm{A}(\mathrm{x}+\mathrm{y}, \mathrm{q})^{3} \mathrm{~A}(\mathrm{x}, \mathrm{q})$ Ù $\mathrm{A}(\mathrm{y}, \mathrm{q})$,
(ii) $A(-x, q)^{3} A(x, q)$, for all $x$ and $y$ in $G$ and $q$ in $Q$.

### 1.3 Definition:

Let $A$ and $B$ be any two ( $Q, L$ )-fuzzy subsets of sets $G$ and $H$, respectively. The product of $A$ and $B$, denoted by $A x B$, is defined as $A x B=\{\langle((x, y), q), A x B((x, y), q)\rangle / f o r$ all $x$ in $G$ and $y$ in $H$ and $q$ in $Q\}$, where $A x B((x, y), q)=A(x, q) \square B(y, q)$.

### 1.4 Definition:

Let $A$ be a $(Q, L)$-fuzzy subset in a set $S$, the strongest $(Q$, $L)$ - fuzzy relation on $S$, that is a $(Q, L)$-fuzzy relation $V$ with respect to $A$ given by $V((x, y), q)=A(x, q) \cup \cup(y, q)$, for all $x$ and y in S and q in Q .

## 2 - PROPERTIES OF (Q, L)-fuzzy subGROUPS:

### 2.1 Theorem:

If $A$ is a $(Q, L)$-fuzzy subgroup of a group ( $G,+$ ), then $A(x, q)$ $\leq A(e, q)$, for $x$ in $G$, the identity $e$ in $G$ and $q$ in $Q$.

## Proof:

For $x$ in $G, q$ in $Q$ and $e$ is the identity element of $G$. Now, $A(e$, $q)=A(x-x, q)^{3} A(x, q)$ Ù $A(-x, q)=A(x, q)$. Therefore, $A(e, q)$ ${ }^{3} A(x, q)$, for $x$ in $G$ and $q$ in $Q$.

### 2.2 Theorem:

If $A$ is a ( $Q, L$ )-fuzzy subgroup of a group ( $G,+$ ), then $A(x-y$, $q)=A(e, q)$ gives $A(x, q)=A(y, q)$, for $x$ and $y$ in $G$, $e$ in $G$ and q in Q .

## Proof:

Let $x$ and $y$ in $G$, the identity $e$ in $G$ and $q$ in $Q$. Now, $A(x, q)$ $=A(x-y+y, q)^{3} A(x-y, q) \cup ் A(y, q)=A(e, q) \cup \cup A(y, q)=A(y, q)=$ $A(x-(x-y), q)^{3} A(x-y, q) \cup \grave{A} A(x, q)=A(e, q) \cup \grave{A}(x, q)=A(x, q)$. Therefore, $A(x, q)=A(y, q)$, for $x$ and $y$ in $G$ and $q$ in $Q$.

### 2.3 Theorem:

A is a $(Q, L)$-fuzzy subgroup of a group $(G,+)$ if and only if $A(x-$ $y, q)^{3} A(x, q)$ Ù $A(y, q)$, for all $x$ and $y$ in $G$ and $q$ in $Q$.

## Proof:

Let $A$ be a ( $Q, L$ )-fuzzy sub group of a group ( $G,+$ ) and $x, y$ in G, q in Q. Then, $A(x-y, q)^{3} A(x, q)$ Uे $A(-y, q)^{3} A(x, q) \cup ் A(y, q)$. Therefore, $A(x-y, q)^{3} A(x, q) \cup \mathcal{A}(y, q)$, for all $x$ and $y$ in $G$ and $q$ in Q. Conversely, if $A(x-y, q)^{3} A(x, q)$ Uे $A(y, q)$, replace $y$ by $x$, then $A(x, q) £ A(e, q)$, for all $x$ in $G$ and $q$ in $Q$. Now, $A(-x, q)=$ $A(e-x, q){ }^{3} A(e, q) \cup ் A(x, q)=A(x, q)$. Therefore, $A(-x, q)^{3} A(x$, $q)$, for all $x$ in $G$ and $q$ in $Q$. It follows that, $A(x+y, q)=A(x-(-y)$, $q)^{3} A(x, q)$ Ù $A(-y, q)^{3} A(x, q) \cup ் A(y, q)$. Therefore, $A(x+y, q)^{3}$ $A(x, q) \cup A(y, q)$, for all $x$ and $y$ in $G$ and $q$ in $Q$. Hence $A$ is a ( $Q, L$ )-fuzzy subgroup of $G$.

### 2.4 Theorem:

Let $A$ be a $(Q, L)$-fuzzy subset of a group $(G,+)$. If $A(e, q)=1$ and $A(x-y, q)^{3} A(x, q) \cup A(y, q)$, then $A$ is a $(Q, L)$-fuzzy subgroup of $G$, for all $x$ and $y$ in $G$ and $q$ in $Q$, where $e$ is the identity element of G .

## Proof:

Let $x$ and $y$ in $G$, $e$ in $G$ and $q$ in $Q$. Now, $A(-x, q)=A(e-x, q)^{3}$ $A(e, q) \cup ̈ A(x, q)=1 U \cup A(x, q)=A(x, q)$. Therefore, $A(-x, q)^{3} A(x$, $q)$, for all $x$ in $G$ and $q$ in $Q$. Now, $A(x+y, q)=A(x-(-y), q)^{3}$ $A(x, q)$ Ù $A(-y, q)^{3} A(x, q)$ Ù $A(y, q)$. Therefore, $A(x+y, q)^{3} A(x$, q) Ù $A(y, q)$, for all $x$ and $y$ in $G$ and $q$ in $Q$. Hence $A$ is a ( $Q$, L)-fuzzy subgroup of G.

### 2.5 Theorem:

If $A$ is a $(Q, L)$-fuzzy subgroup of a group $(G,+)$, then $H=\{x$ / xîG: $A(x, q)=1\}$ is either empty or is a subgroup of $G$.

## Proof:

If no element satisfies this condition, then $H$ is empty. If $x$ and $y$ in $H$, then $A(x-y, q)^{3} A(x, q)$ Ù $A(-y, q)^{3} A(x, q)$ Ù $A(y, q)=1$ Ù $1=1$. Therefore, $A(x-y, q)=1$.

We get $x-y$ in $H$. Therefore, $H$ is a subgroup of $G$. Hence $H$ is either empty or is a subgroup of G .

### 2.6 Theorem:

If $A$ is a $(Q, L)$-fuzzy subgroup of a group $(G,+)$, then $H=\{$
$x \hat{I} G: A(x, q)=A(e, q)\}$ is a subgroup of $G$.

## Proof:

Let $x$ and $y$ be in $H$. Now, $A(x-y, q)^{3} A(x, q)$ ن̀ $A(-y, q)^{3} A(x$,
q) Ù $A(y, q)=A(e, q)$ Ù $A(e, q)=A(e, q)$. Therefore, $A(x-y, q)$
${ }^{3} A(e, q)--------$ (1). And, $A(e, q)=A((x-y)-(x-y), q)^{3} A(x-y$,
q) U A(- $(x-y), q)^{3} A(x-y, q)$ نे $A(x-y, q)=A(x-y, q)$.

Therefore, $A(e, q)^{3} A(x-y, q)$---------- (2).
From (1) and (2), we get $A(e, q)=A(x-y, q)$.
Therefore, $\mathrm{x}-\mathrm{y}$ in H . Hence H is a subgroup of G .

### 2.7 Theorem:

Let $A$ be a $(Q, L)$-fuzzy subgroup of a group ( $G,++$ ). If $A(x-y, q$ $)=1$, then $A(x, q)=A(y, q)$, for $x$ and $y$ in $G$ and $q$ in $Q$.

## Proof:

Let $x$ and $y$ in $G$ and $q$ in $Q$. Now, $A(x, q)=A(x-y+y, q)^{3} A(x-y$, q) Ù $A(y, q)=1$ Ü $A(y, q)=A(y, q)=A(-y, q)=A(-x+x-y, q)^{3}$ $A(-x, q) \cup A(x-y, q)=A(-x, q) \cup \cup 1=A(-x, q)=A(x, q)$. Therefore, $A(x, q)=A(y, q)$, for $x$ and $y$ in $G, q$ in $Q$.

### 2.8 Theorem:

Let $A$ be a $(Q, L)$-fuzzy subgroup of a group ( $G,+$ ). If $A(x-y$, $q)=0$, then either $A(x, q)=0$ or $A(y, q)=0$, for all $x$ and $y$ in $G$ and q in Q .

## Proof:

Let $x$ and $y$ in $G$ and $q$ in $Q$. By the definition $A(x-y, q)^{3} A(x$, q ) Ù $A(y, q)$
which implies that $0^{3} \mathrm{~A}(\mathrm{x}, \mathrm{q})$ 亡̀ $\mathrm{A}(\mathrm{y}, \mathrm{q})$. Therefore, either $\mathrm{A}(\mathrm{x}$, $q)=0$ or $A(y, q)=0$.

### 2.9 Theorem:

Let $(G,+)$ be a group and $Q$ be a non-empty set. If $A$ is a $(Q$, L)-fuzzy subgroup of $G$, then $A(x+y, q)=A(x, q)$ Ù $A(y, q)$ with $A(x, q)^{1} A(y, q)$, for each $x$ and $y$ in $G$ and $q$ in $Q$.

## Proof:

Let x and y belongs to G and q in Q . Assume that $\mathrm{A}(\mathrm{x}, \mathrm{q})>$ $A(y, q)$. Now, $A(y, q)=A(-x+x+y, q)^{3} A(-x, q) \cup(x+y, q)^{3}$ $A(x, q) \dot{U} A(x+y, q)^{3} A(y, q) \dot{U} A(x+y, q)=A(y, q)$. And $A(y, q)$ $=A(x, q) \cup A(x+y, q)=A(x+y, q)$. Therefore, $A(x+y, q)=A(y, q)$ $=A(x, q) \cup A(y, q)$, for all $x$ and $y$ in $G$ and $q$ in $Q$.

### 2.10 Theorem:

If $A$ and $B$ are two $(Q, L)$-fuzzy subgroup of a group $G$, then their intersection AÇB is a (Q, L)-fuzzy subgroup of $G$.

## Proof:

Let $x$ and $y$ belong to $G$ and $q$ in $Q, A=\left\{a^{(x, q), A(x, q) \tilde{n} / x}\right.$ in $G$ and $q$ in $Q\}$ and $B=\{a(x, q), B(x, q) \tilde{n} / x$ in $G$ and $q$ in $Q$ \}. Let $C=A C ̧ B$ and $C=\{a ́(x, q), C(x, q) \tilde{n} / x$ in $G$ and $q$ in $Q\}$. (i) $C(x+y, q)=A(x+y, q) \cup B(x+y, q)^{3}\{A(x, q) \cup A(y, q)\} \cup \cup B(x$, q) $\dot{U} B(y, q)\}^{3}\{A(x, q) \dot{U} B(x, q)\} \cup\{A(y, q) \cup B(y, q)\}=C(x, q)$ UC $(y, q)$. Therefore, $C(x+y, q){ }^{3} C(x, q)$ Ü $C(y, q)$, for all $x$ and $y$ in $G$ and $q$ in $Q$. (ii) $C(-x, q)=A(-x, q) \cup \cup B(-x, q)^{3} A(x, q) \cup \dot{U}(x$, $q)=C(x, q)$. Therefore, $C(-x, q)^{3} C(x, q)$, for all $x$ in $G$ and $q$ in $Q$. Hence $A C ̧ B$ is a $(Q, L)$-fuzzy subgroup of the group $G$.

### 2.11Theorem:

The intersection of a family of (Q, L)-fuzzy subgroups of a group G is a $(\mathrm{Q}, \mathrm{L})$-fuzzy subgroup of G .

## Proof:

It is trivial.

### 2.12 Theorem:

Let $A$ be a $(Q, L)$-fuzzy subgroup of a group $G$. If $A(x, q)<A(y$, $q)$, for some $x$ and $y$ in $G$ and $q$ in $Q$, then $A(x+y, q)=A(x, q)$ $=A(y+x, q)$, for all $x$ and $y$ in $G$ and $q$ in $Q$.

## proof:

Let $A$ be a ( $Q, L$ )-fuzzy subgroup of a group $G$. Also we have
$A(x, q)<A(y, q)$, for some $x$ and $y$ in $G$ and $q$ in $Q, A(x+y, q)$ ${ }^{3} A(x, q)$ Ù $A(y, q)=A(x, q)$; and $A(x, q)=A(x+y-y, q){ }^{3} A(x$ $+y, q) \cup A(-y, q)^{3} A(x+y, q)$ Ù $\left.A(y, q)\right\}=A(x+y, q)$. Therefore, $A(x+y, q)=A(x, q)$, for all $x$ and $y$ in $G$ and $q$ in $Q$. Hence $A(x$ $+y, q)=A(x, q)=A(y+x, q)$, for all $x$ and $y$ in $G$ and $q$ in $Q$.

### 2.13 Theorem:

Let $A$ be a $(Q, L)$-fuzzy subgroup of a group $G$. If $A(x, q)>A(y$, $q)$, for some $x$ and $y$ in $G$ and $q$ in $Q$, then $A(x+y, q)=A(y, q)$ $=A(y+x, q)$, for all $x$ and $y$ in $G$ and $q$ in $Q$.

## Proof:

It is trivial.

### 2.14 Theorem:

Let $A$ be a (Q, L)-fuzzy subgroup of a group $G$ such that $I m$ $A=\{a\}$, where $a$ in $L$. If $A=B E ̇ C$, where $B$ and $C$ are $(Q, L)$-fuzzy subgroups of $G$, then either BÍC or CÍB.

## Proof:

Let $A=B$ È $C=\{$ á $(x, q), A(x, q) \tilde{n} / x$ in $G$ and $q$ in $Q\}, B$ $=\{a ́(x, q), B(x, q) \tilde{n} / x$ in $G$ and $q$ in $Q\}$ and $C=\{$ á $(x, q)$, $C(x, q) \tilde{n} / x$ in $G$ and $q$ in $Q\}$. Suppose that neither Bí $C$ nor C í B. Assume that $B(x, q)>C(x, q)$ and $B(y, q)<C(y, q)$, for some $x$ and $y$ in $G$ and $q$ in $Q$. Then, $a=A(x, q)=(B E C)(x, q)$ $=\mathrm{B}(\mathrm{x}, \mathrm{q})$ Ú $\mathrm{C}(\mathrm{x}, \mathrm{q})=\mathrm{B}(\mathrm{x}, \mathrm{q})>\mathrm{C}(\mathrm{x}, \mathrm{q})$. Therefore, $\mathrm{a}>\mathrm{C}(\mathrm{x}, \mathrm{q})$. And, $a=A(y, q)=(B E ̀ C)(y, q)=B(y, q)$ Ú $C(y, q)=C(y, q)>$ $\mathrm{B}(\mathrm{y}, \mathrm{q})$. Therefore, $\mathrm{a}>\mathrm{B}(\mathrm{y}, \mathrm{q})$. So that, $\mathrm{C}(\mathrm{y}, \mathrm{q})>\mathrm{C}(\mathrm{x}, \mathrm{q})$ and $B(x, q)>B(y, q)$.

Hence $B(x+y, q)=B(y, q)$ and $C(x+y, q)=C(x, q)$, by Theorem 2.12 and 2.13 .

But then, $a=A(x+y, q)=(B E ̇ C)(x+y, q)=B(x+y, q)$ Ú $C(x+y, q)$ $\}=B(y, q)$ Ú $C(x, q)<a-------(1)$.

It is a contradiction by (1). Therefore, either BíC or C í B is true.

### 2.15 Theorem:

If $A$ and $B$ are ( $Q, L$ )-fuzzy subgroups of the groups $G$ and $H$, respectively, then $A x B$ is a ( $Q, L$ )-fuzzy subgroup of GxH.

## Proof:

Let $A$ and $B$ be (Q, L)-fuzzy subgroups of the groups $G$ and $H$ respectively. Let $x 1$ and $x 2$ be in $G, y 1$ and $y 2$ be in $H$. Then $(x 1, y 1)$ and (x2, y2) are in GxH and q in Q. Now, AxB [ (x1, $y 1)+(x 2, y 2), q]=A x B((x 1+x 2, y 1+y 2), q)=A(x 1+x 2, q)$ U' $B(y 1+y 2, q)^{3}\{A(x 1, q) \cup ் A(x 2, q)\} \cup\{B(y 1, q) \cup B(y 2, q)\}=\{A(x 1$, q) ÜB(y1, q) $\} \cup \cup\{A(x 2, q)$ ÜB(y2, q) $\}=A x B((x 1, y 1), q) \cup ̈ A x B($ $(x 2, y 2), q)$. Therefore, $\operatorname{AxB}[(x 1, y 1)+(x 2, y 2), q]{ }^{3} \mathrm{AxB}((x 1$, $y 1), q) \cup ̈ \operatorname{AxB}((x 2, y 2), q)$. And $\operatorname{AxB}[-(x 1, y 1), q]=\operatorname{AxB}((-x 1$, $-y 1), q)=A(-x 1, q)$ Ù $B(-y 1, q)^{3} A(x 1, q) U ̇ B(y 1, q)=A x B(($ $\mathrm{x} 1, \mathrm{y} 1)$ ) q). Therefore, $\operatorname{AxB}[-(\mathrm{x} 1, \mathrm{y} 1), \mathrm{q}]^{3} \mathrm{AxB}((\mathrm{x} 1, \mathrm{y} 1), \mathrm{q})$. Hence $A x B$ is a $(Q, L)$-fuzzy subgroup of $G x H$.

### 2.16 Theorem:

Let $A$ and $B$ be ( $Q, L$ )-fuzzy subsets of the groups $G$ and $H$, respectively. Suppose that e and el are the identity element of G and $H$, respectively. If $A x B$ is $(Q, L)$-fuzzy subgroup of $G x H$, then at least one of the following two statements must hold.
(i) $B(e l, q){ }^{3} A(x, q)$, for all $x$ in $G$ and $q$ in $Q$,
(ii) $A(e, q)^{3} B(y, q)$, for all $y$ in $H$ and $q$ in $Q$.

## Proof:

Let $A x B$ be a (Q, L)-fuzzy subgroup of GxH.
By contra positive, suppose that none of the statements (i) and (ii) holds. Then we can find $a$ in $G$ and $b$ in $H$ such that $A(a, q)>B(e l, q)$ and $B(b, q)>A(e, q), q$ in $Q$. We have, $A x B($ $(a, b), q)=A(a, q)$ Ù $B(b, q)>A(e, q)$ Ù $B(e l, q)=A x B((e, e l$ ), q). Thus $A x B$ is not a $(Q, L)$-fuzzy subgroup of $G x H$. Hence either $B(e l, q)^{3} A(x, q)$, for all $x$ in $G$ and $q$ in $Q$ or $A(e, q)^{3}$ $B(y, q)$, for all $y$ in $H$ and $q$ in $Q$.

### 2.17 Theorem:

Let $A$ and $B$ be (Q, L)-fuzzy subsets of the groups $G$ and $H$, respectively and $A x B$ is a $(Q, L)$-fuzzy subgroup of $G x H$. Then the following are true:
(i) if $A(x, q) £ B(e l, q)$, then $A$ is a $(Q, L)$-fuzzy subgroup of $G$. (ii) if $B(x, q) £ A(e, q)$, then $B$ is a $(Q, L)$-fuzzy subgroup of $G$.
(iii) either $A$ is a $Q$-fuzzy subgroup of $G$ or $B$ is a $Q$-fuzzy subgroup of H .

## Proof:

Let $A x B$ be a $(Q, L)$-fuzzy subgroup of $G x H, x$ and $y$ in $G$ and q in Q . Then ( $\mathrm{x}, \mathrm{el}$ ) and ( y , el ) are in GxH. Now, using the property $A(x, q) £ B(e l, q)$, for all $x$ in $G$ and $q$ in $Q$, we get, $A(x-y, q)=A(x-y, q)$ U $B(e l e l, q)=A x B(((x-y)$, (elel $)), q)=$ $\operatorname{AxB}[(x, e l)+(-y, e l), q]{ }^{3} A x B((x, e l), q)$ Ù $A x B((-y, e l), q)$ $=\{A(x, q)$ Ú $B(e l, q)\}$ Ù $\{A(-y, q)$ Ü $B(e l, q)\}=A(x, q)$ ÜA $(-y, q)^{3}$ $A(x, q)$ ÜA(y,q). Therefore, $A(x-y, q)^{3} A(x, q)$ Ü $A(y, q)$, for all $x, y$ in $G$ and $q$ in $Q$. Hence $A$ is a ( $Q, L$ )-fuzzy subgroup of $G$. Thus (i) is proved. Now, using the property $B(x, q) £ A(e, q)$, for all $x$ in $H$ and $q$ in $Q$, we get, $B(x-y, q)=B(x-y, q) \cup \dot{A}(e e$, q) $=A x B(((e e),(x-y)), q)=A x B[(e, x)+(e,-y), q]^{3} A x B((e, x)$, q) Ù $A x B((e,-y), q)=\{B(x, q) \cup \dot{A}(e, q)\} \cup \cup\{B(-y, q)$ Ù $A(e, q)\}=$ $B(x, q)$ Ù $B(-y, q)^{3} B(x, q)$ Ü $B(y, q)$. Therefore, $B(x-y, q)^{3} B(x$, q) Ù $B(y, q)$, for all $x$ and $y$ in $H$ and $q$ in $Q$. Hence $B$ is a ( $Q$, L)-fuzzy subgroup of H . Thus (ii) is proved. (iii) is clear.

### 2.18 Theorem:

Let $A$ be a ( $Q, L$ )-fuzzy subset of a group $G$ and $V$ be the strongest $(Q, L)$-fuzzy relation of $G$ with respect to $A$. Then $A$ is a $(Q, L)$-fuzzy subgroup of $G$ if and only if $V$ is a $(Q, L)$-fuzzy subgroup of GxG.

## Proof:

Suppose that $A$ is a $(Q, L)$-fuzzy subgroup of $G$. Then for any $x=(x 1, x 2)$ and $y=(y 1, y 2)$ are in $G x G$ and $q$ in $Q$. We have, $V(x-y, q)=V[(x 1, x 2)-(y 1, y 2), q]=V((x 1-y 1, x 2-y 2), q)=A($ $(x 1-y 1), q) U ் A((x 2-y 2), q){ }^{3}\{A(x 1, q) \cup \cup A(-y 1, q)\} \cup \cup\{A(x 2, q)$ U் $A(-y 2, q)\}=\{A(x 1, q) \cup \ddot{U}(x 2, q)\} \cup \dot{\{ }\{(-y 1, q) U ̈ A(-y 2, q)\}=\{A(x 1$, $q) \cup A(x 2, q)\} \cup(A(y 1, q)$ U $A(y 2, q)\}=V((x 1, x 2), q) \cup V((y 1$, $y 2), q)=V(x, q) U \cup V(y, q)$. Therefore, $V((x-y), q)^{3} V(x, q) U V(y$, $q)$, for all $x$ and $y$ in $G x G$ and $q$ in $Q$. This proves that $V$ is a ( $\mathrm{Q}, \mathrm{L}$ )-fuzzy subgroup of GxG . Conversely, assume that V is a ( $Q, L$ )-fuzzy subgroup of $G x G$, then for any $x=(x 1, x 2)$ and $y=(y 1, y 2)$ are in $G x G$, we have $A(x 1-y 1, q) \cup \cup A(x 2-y 2, q)=V($ $(x 1-y 1, x 2-y 2), q)=V[(x 1, x 2)-(y 1, y 2), q]=V(x-y, q)^{3}$ $V(x, q) \cup \cup V(y, q)=V((x 1, x 2), q) \cup \cup V((y 1, y 2), q)=\{A(x 1, q)$ Ù $A(x 2, q)\} \cup A(y 1, q)$ Ü $A(y 2, q)\}$. If we put $x 2=y 2=e$, where $e$ is the identity element of $G$. We get, $A((x 1-y 1), q)^{3} A(x 1, q)$ Ù $A(y 1, q)$, for all $x 1$ and $y 1$ in $G$ and $q$ in $Q$. Hence $A$ is a ( $Q$, L)-fuzzy subgroup of $G$.

## REFERENCES

1. Akram.M and Dar.K.H, On fuzzy d-algebras, Punjab university journal of mathematics, 37(2005), 61-76. |2. Anthony.J.M. and Sherwood.H, Fuzzy groups Redefined, Journal of mathematical analysis and applications, 69,124-130 (1979)|3. Asok Kumer Ray, On product of fuzzy subgroups, Fuzzy sets and systems, 105, 181-183 (1999).| 4. Azriel Rosenfeld, Fuzzy Groups, Journal of mathematical analysis and applications, 35, 512-517 (1971). | 5. Biswas.R, Fuzzy subgroups and Anti-fuzzy subgroups, Fuzzy sets and systems, 35,121-124 (1990). | 6. Davvaz.B and Wieslaw.A.Dudek, Fuzzy n-ary groups as a generalization of rosenfeld fuzzy groups, ARXIV-0710.3884VI(MATH.RA) 20 OCT 2007, 1-16. | 7. Goguen.J.A., L-fuzzy Sets, J. Math. Anal. Appl. 18 145-147(1967). | 8. Kog.A and Balkanay.E, - -Euclidean L-fuzzy ideals of rings, Turkish journal of mathematics 26 (2002) 149-158. | 9. Kumbhojkar.H.V., and Bapat.M.S., Correspondence theorem for fuzzy ideals, Fuzzy sets and systems, (1991) Monamed Asaad, Groups and fuzzy subgroups, Fuzzy sets and systems, North-Holland, (1991). 11. Mustafa Akgul, Some properties of fuzzy groups, Journal of mathematical analysis and applications, 133, 93-100 (1988). 112. Palaniappan. N \& K. Arjunan, 2007. Operation on fuzzy and anti fuzzy ideals, characteristic fuzzy subgroups of a finite group, Fuzzy sets and systems, 235-241 (1991). | 15. Sidky.F.I and Atif Mishref.M, Fuzzy cosets and cyclic and abelian fuzzy characteristic fuzzy subgroups of a finite group, Fuzzy sets and systems, 235-241 (1991). I 15. Sidky.F.I and Atif Mishref.M, Fuzzy cosets and cyclic and abelian fuzzy
subgroups, Fuzzy sets and systems, 43 (1991) $243-250$. | 16. Solairaju.A and Nagarajan.R, A New Structure and Construction of Q-Fuzzy Groups, Advances in fuzzy subgroups, Fuzzy sets and systems, 43(1991) 243-250. 16. Solairaju.A and Nagarajan.R, A New Structure and Construction of Q-Fuzzy Groups, Advances in fuzzy
mathematics, Volume 4, Number 1 (2009) pp. 23-29. | 17. Solairaju.A and Nagarajan.R, Lattice Valued Q-fuzzy left R-submodules of near rings with respect to T-norms, Advances in fuzzy mathematics,Vol 4, Num. 2, 137-145(2009). | 18. Solairaju.A and Nagarajan.R, "Q-Fuzzy left R-subgroups of near rings with respect to t-norms". Antarctica Journal of Mathematics, 5(2008) 1-2, 59-63. | 19. Zadeh.L.A, Fuzzy sets, Information and control, Vol.8, 338-353 (1965). |
