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Engineering

A numerical method for simulating 

discontinuous shallow flow over an infiltrating 
surface

* Roshni Patel ** Jitendrasinh D. Raol.

A numerical method based on the Mac Cormack finite difference scheme was developed for simulating two-dimensional 
overland flow with spatially variable infiltration and micro-topography using the hydrodynamic flow equations. The Mac 
Cormack scheme is enhanced by using the method of fractional steps to simplify application; treating the friction slope, a stiff 
source term, point-implicitly, plus, for numerical oscillation control and stability, up winding the convective accelera¬tion term. 
The developed method will also be useful for simulating irrigation, tidal flat and wetland circulation, and floods.

ABSTRACT

1. INTRODUCTION
 Hydrologists are often faced with the challenge of predicting 
the timing and magnitude of “rainfall-generated run-off from 
watersheds for flood control, pollution prevention and ecologi-
cal purposes. An important component of the rainfall run-off 
process is Horton an overland flow, which is the shallow flow 
of water over the land surface prior to the major channeliza-
tion that results when the rainfall rate exceeds the soil infiltra-
tion capacity in at least some areas of the watershed. 

This paper presents a numerical method based on the Mac 
Cormack finite difference scheme developed for simulating 
two-dimensional, spatially variable overland flow at a small 
scale. The equations that describe this process are very simi-
lar to the well-known St. Venant and shallow water equations, 
thus, the developed numerical method or aspects thereof can 
be applied to a wide range of shallow water flow problems 
where discontinuous regimes are expected, such as irriga-
tion, tidal flat circulation, flow in ephemeral stream channels 
and flash floods.

2. EQUATIONS
The two-dimensional hydrodynamic overland flow equations 
can be derived from the Navier-Stokes equations, by averag-
ing over depth using kinematic boundary conditions and malt-
ing certain assumptions, including: that

(a) Velocity is constant with depth, 
(b) The vertical velocity and acceleration components are 

small,
(c)  The pressure distribution is hydrostatic, and horizontal 

shear stresses are small. 
In terms of the dependent variables, depth, h, and unit dis-
charge in the x- and y-directions, qx and qy respectively, 
these equations are

Equation (1) results from conservatoire of-mass over a con-
trol volume, and Equations (2) and (3) result from conserva-

tion of momentum in the x- and y-directions respectively. The 
source term q1, lateral inflow, is the rate of water vertically 
added to or removed from the control volume. The various 
differential terms in the momentum equations represent dif-
ferent quantities related to conservation of momentum in the 
x-: direction, these terms are analogous to the terms in the 
classical St. Venant equations as follows.

 Pressure force

 Local acceleration

 Convective acceleration

The y-direction terms are related similarly.

The bed slopes, ………………. (4)

Measured data are used to estimate these slopes in a manner 
that must be consistent with the numerical scheme; various 
methods exist for the evaluation of the friction slope terms, S

fx
 

and S
fy
. The two-dimensional form of the Darcy-Weisbach (D-

W) equation is primarily used to compute the friction slopes 
herein

Where f is the D-W friction factor Natural overland flow is gen-
erally laminar, but is ‘disturbed’ by rainfall and topographic 
irregularities [4j. In the laminar flow regime, in which viscous 
stresses are much larger than Reynolds stresses, / is com-
puted as a function “of Reynolds number, Re, by the equation

…………………………………………….. (6)

Where Ko is a resistance parameter related to the ground 
surface characteristics. The Reynolds number for two-dimen-
sional flow is computed as

 …………………………………… (7)

3. NUMERICAL METHOD
Mac Cormack’s explicit predictor-corrector finite difference 
method was chosen as the basic scheme after a review of the 
various numerical methods available this scheme has been 
“successfully used to solve similar equations for the system of 
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overland flow equations in two dimensions it is written 

 

The subscripts J and K & are spatial indices in the x- and y- 
directions respectively, and the superscript n refers to 

the time level where v is the kinematic viscosity of water After 
substitution, the laminar flow friction slope terms become

 ………………….…… (10)

To account for turbulent momentum transfer the well-known 
second-order turbulent viscosity terms

 …………………. (11)

Can be added in the x- and y directions respectively In these 
terms, is the coefficient of turbulent viscosity or eddy coef-
ficient. 

The overland flow equations are presented here in vector 
form

In these equations, T denotes the transpose; G (U) and H (U) 

are referred to as flux vectors, and S (U) as the source vector. 
Here after, these vectors will be shown as G, H and S, but the 
dependence on the vector of dependent variables U remains.

The dependent variable vector predicted with Equation de-
noted with an *, is used to compute the differences in the cor-
rector step As shown, backward spatial differences are used 
in the predictor step, and forward spatial differences in the 
corrector. In order to obtain second-order accuracy with the 
Mac Cormack, scheme, It. is necessary to alternate the spa-
tial difference sequence in time Here, for example, a forward 
-backward difference sequence would be used to compute 
U” + 2. This form has been used, previously for less spatially 
variable overland flow computations. Appropriate initial and 
boundary conditions must be specified. For the-desired simu-
lation, the appropriate initial condition is zero depth and zero 
unit discharge everywhere in the domain. The best way to 
handle this initial condition is to assign small, significant start-
ing depth the values used are discussed in subsequent para-
graph in experimental plot overland flow simulations (rectan-
gular plots), the subject of another aspect of this research for 
which this model was developed, closed boundaries formed 
by metal walls on three sides allow no through flow, so qx and 

qy perpendicular to these boundaries is set to zero. Depths 
at closed boundaries are determined by using inward differ-
ences in the continuity equation. At the plot outlet, an open 
boundary is simulated by using inward differences in both the 
continuity and momentum equations. Other boundary condi-
tions are easily implemented for different applications.

The maximum time step (with respect to stability) allowable in 
the Mac Cormack scheme applied to linear hyperbolic equa-
tions is limited by the well –known Courant-Friedrich-Lowy 
(CFL) condition, as are all explicit finite difference methods. 

(A) Method of fractional steps
Two-dimensional finite difference schemes for systems of hy-
perbolic equations are sometimes split into a series of one-di-
mensional finite difference operators known as fractional step 
A fractional step Mac Cormack scheme has been previously 
applied to the St. Venant equations and used to simulate 
reservoir and river flows In addition to simplifying application 
of the scheme to a two-dimensional problem, those authors 
found that larger time steps can be used. The fractional step 
Mac Cormack scheme is written

 …………………………………………………….. (17)

Where Lx and Ly are one-dimensional difference operators, 
each applied twice and in a symmetrical manner. The first x- 
direction operator, Lxl, is written

Only the x-direction flux vector and source terms are used to 
compute the new values of the dependent variables, and the 
values computed in the corrector step are not representative 
of a particular tune so they are denoted with **. The other 
operators have a similar form.

To retain second-order accuracy overall and not introduce 
any directional bias; a symmetric application of difference di-
rections is required. Here, the following sequence was used:

Lx1:  Predictor, backward difference.

Corrector, forward difference 

Lyl:  Predictor, backward difference.

Corrector, forward difference 

Ly2:  Predictor, forward difference.

Corrector, backward difference

LX2:  Predictor, forward difference 

Corrector, backward difference 

Thus, a fractional step Mac Cormack scheme was applied to 
the overland flow equations, with second-order accuracy in 
both time and space.

(B) Lateral inflow and interactive infiltration
 A goal of this study was to account for fully interactive infiltra-
tion when computing lateral inflow rates such that the effects 
of the relationship between micro topography and infiltration 
characteristics on run-off could be explored. The occurrence 
of Horton an overland flow is completely determined by rain-
fall and ground surface infiltration characteristics Therefore, 
rainfall was considered constant in time when applied, and a 
common infiltration model was used; it is the dynamic inter-
action allowed between surface water and infiltration due to 
spatial variations in infiltration parameters and micro topogra-
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phy that is unique in this model, not the infiltration model itself.

Saturation excess (Dunne) run-off generation is another im-
portant hydrologic mechanism related to overland flow, in 
which the soil surface becomes saturated from below (e.g. 
due to rising groundwater), thus precluding infiltration.

Currently, every node is considered to be initially not ponded 
(no surface water, but with the soil at a specified initial mois-
ture content), and the infiltration capacity is greater than the 
rate of water supplied, the infiltration capacity at every com-
putational node prior to ponding is determined by the well-
known Green-Ampt infiltration model.

 ……………….. (20)

Where K is the effective hydraulic conductivity, is the wetting 
front suction, is the volumetric moisture content deficit (ca-
pacity minus initial) at the wetting front, and F is the cumula-
tive depth of water infiltrated. The rate of water available to 
infiltrate is equal to the rainfall rate, r, plus any flow onto the 
node from adjacent nodes

………………………… (21)

Where qx on and qy on are determined by summing the adja-
cent-node discharges that are in the direction of node (j, k). In 
this manner, overland flow generated in one area is allowed 
to infiltrate into other areas if the capacity exists at any time in 
the simulation; thus, fully interactive infiltration is simulated. If 
the node remains unponded (fe za), then the average infiltra-
tion rate over the time step is determined 

 …………………………………….. (22)

Though the time steps normally used in these simulations are 
very small and the error associated

With not allowing for this phenomenon is likely negligible.

If a node is ponded (fc < ia), the rate available to infiltrate 
includes the depth of water on that node

………………… (23)

If this rate is greater than the infiltration capacity, Fn + l is 
computed using the Green-Ampt equation for cumulative in-
filtration

 ……… (24)

Which is solved using the well-known Newton-Raphson 
method The average infiltration rate over the time interval is 
then estimated

  ……………………………………. (25)

 In both cases, the average lateral inflow rate at a point over 
the time step is computed as the difference between the rain-
fall rate and the infiltration rate

………………………………… (26)

And is held constant over each time step This source term 
does not act in the x- or y-direction (q1 is assumed to be 
added to the control volume vertically), so half the computed 
value is applied in the x-direction fractional steps, and half in 
the j-direction.

As defined here, lateral inflow at any particular node (j, k) can 
vary from a minimum value equal to

…………………… (27)

Where all surface water on the node and coming towards the 
node from adjacent nodes is infiltrated, to a maximum value of 

……………………………………………. (28)
Which is the case for rainfall on an impervious surface Typi-
cally, lateral inflow varies from 0 to r in rainfall excess-type 
hydrologic models, although minimum values equal to — h/
At occur in models that allow partial interaction, i.e. only after 
rainfall 

4. RESULTS AND DISCUSSION
Comparative examples
The general properties of the basic Mac Cormack scheme 
and numerous numerical tests of it related to similar equation 
sets have been reported elsewhere Here this paper presents 
the results of several numerical comparisons performed to 
show the developed models effectiveness related to spatially 
variable overland flow. four comparisons are made: (1) steady 
state results are compared with the kinematic wave “solution 
“for a plane with “ “constant lateral inflow, (2) a comparison is 
made with an analytical solution of a dam break p756lem7J3) 
model results are compared with results of an experiment 
where spatially variable lateral flow was applied to a three-
plane cascade,’ arid (4) but flow hydro graphs are computed 
and compared with some recently published results for over-
land flow on an infiltrating plane. The first comparative exam-
ple is used as a general indicator of the ability of the hydrody-
namic model to predict the flow variables for a simple case.

Results from rainfall run-off experimental simulations on a 
24 m long cascade of three aluminum planes with spatially 
variable lateral inflow configured such that shocks form are 
compared with model results in the third example. Each plane 
section was 8 m long, with slopes of 0.02, 0.015 and 0.01 
in the downstream direction. In the most difficult scenario to 
simulate, each section received constant lateral inflows of 
389, 230 and 288 cm h-1 respectively, for a duration of 10 
s./Figure.2 shows the model-predicted outflow hydrograph 
compared with the experimental result produced with .In this 
experiment, a shock wave is produced, which arrives at the 
downstream end of the cascade at approximately 25 s; the 
developed model reproduces these results well considering 
the potential experimental errors, such as non-uniform lateral 
inflow, and better than other published analytical and numeri-
cal methods. Here, Manning’s equation was used to compute 
friction slope, with a friction coefficient of 0.009.

Table: I,
Input parameters for the steady state kinematic wave test

Lateral Inflow 25.4 mm h-1

Length of plane 30.48 m

Bed slope 0.05

D-W friction factor 0.265

Table II. Results for the steady state kinematic wave test

Depth (cm) Discharge (cm2 s-1)

Kinematic wave 0.1462 2.1505

Hydrodynamic model 
Percent difference

0.1471
0.62

2.1418 
0.40

Figure:1 Results for dam break problem
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Figure: 2.Measured and simulated results for Iwagaki’s 
experiment

The fourth comparison uses some recently published results 
of overland flow simulations on a 50 m long plane with spatial-
ly variable infiltration parameter. Their model is comprised of 
the kinematic wave equations coupled to the Smith-Parlange 
infiltration equation solved with a finite difference scheme on 
a characteristic computational net. There are several impor-
tant differences between their model and the current model 
that must be described before the comparison is made.

A different infiltration model was used to compute lateral in-
flow; however, proper choice of the Green-Ampt parameters 
*P and A0 corresponding to the Smith-Parlange parameter B 
will cause the models to yield almost identical results. These 
near-equivalent parameters are derived using the approxima-
tion of Young’s for the soil sorptivity, S 

And the relationship between the smith-parlange infiltration 
model parameters B and S

Figure: 3.Infiltration capacity curves for the Green- Ampt 
& Smith-Parlange infiltration capacity
Curves with near-equivalent parameters

Were 2.37 x 10-4 and 4.7 x 10-4cm s-1 respectively. Other 
Model parameters are presented in Table III.

Fig 4-5-6 represent case -1, 2, and 3 respectively it is seen 
from these figures that the hydrodynamic model results are 

very close to those produced with a characteristic-based kine-
matic solution on a plane where the kinematic approximation.

Table III. Input parameters for the infiltrating kinematic 
wave test
Rainfall rate  177.6 mm h-1
Rainfall duration  20 Min
Length of Place  50 m
Bed slope   0.04
Manning’s n   0.1

Figure: 4. Results for an infiltrating plane, Uniform k- 
case (1)

Figure:5 Results for an infiltrating plane, k decreasing 
down slope - case (2)

Figure:6 Results for an infiltrating plane, K increasing 
down slope -case (3)

Should be close to the solution of the full hydrodynamic equa-
tions, and the difference is attributable to the different infiltra-
tion models.


