
Volume : 1 | Issue : 6 | June 2012 ISSN - 2250-1991

54 X PARIPEX - INDIAN JOURNAL OF RESEARCH

Research Paper

* Research student, Arya Institute of Engineering & Technology, Jaipur

** Associate Professor, Arya Institute of Engineering & Technology, Jaipur

Keywords : Data mining, data warehousing, evolutionary algorithms, materialized view selection.

Engineering

An Evolutionary Approach to Materialized View

in Data Warehousing

* Sanket S. Patel ** Mr. Deepak Dembla

A data warehouse (DW) contains multiple views accussed by queries. One of the most important decisions in designing a

DW is selecting views to materialize for the purpose of efficiently supporting decision making. The search space for possible
materialalized views is exponentially large. Therefore heuristics have been used to search for a near optimal solution. In this
paper, we explore the use of an evolutionary algorithm for materialized view selection based on multiple global processing

plans for queries. We apply a hybrid evolutionary algorithm to solve three related problems. The first is to optimize queries. The
second is to choose the best global processing plan from multiple global processing plans. The third is to select materialized
views from a given global processing plan. Our experiment shows that the hybrid evolutionary algorithm de- livers better

performance than either the evolutionary algorithm or heuristics used alone in terms of the minimal query and maintenance

cost and the evaluation cost to obtain the minimal cost.

ABSTRACT

I. INTRODUCTION
DATA warehousing is an approach to the integration of data
from multiple, possibly very large, distributed, heterogeneous
databases and other information sources. A data warehouse
(DW) is a repository of integrated information available for
querying and analysis. To avoid accessing the original data
sources and increase the efficiency of the queries posed to
a DW, some intermediate results in the query processing
are stored in the DW. These intermediate results stored in a
DW are called materialized views. On a sufficiently abstract
level, a DW can be seen as a set of materialized views over
the data extracted from the distributed heterogeneous data-
bases. There are many research issues related to DWs [1],
among which materialized view selection is one of the most
challenging ones. On one hand, materialized views speed
up query processing. On the other hand, they have to be re-
freshed when changes occur to the data sources. Therefore,
there are two costs involved in materialized view selection:
the query processing cost and the materialized view mainte-
nance cost. The question we are interested in is: what views
should be materialized in order to make the sum of the query
performance and view maintenance cost minimal?

The materialized view selection involves a difficult trade-off
between query performance and maintenance cost.

• Materializing all the views in a DW can achieve the best
performance but at the highest cost of view maintenance.

• Leaving all the views virtual will have the lowest view
maintenance cost but the poorest query performance.
The word “virtual” here means that no intermediate result
will be saved in the DW.

• We can have some views materialized (e.g., have those
shared views materialized), and leave others virtual. In
this way we may achieve an optimal (or near optimal) bal-
ance between the performance gain and maintenance
cost. Unfortunately the materialized view selection design
problem has been proven to be NP-hard [2]. Heuristics
have to be used in practice to find a near optimal solution

to this problem.

The problem considered in this paper can be described as fol-
lows. Based on a set of frequently asked DW queries, select
a set of views to materialize so that the total query and main-
tenance cost is minimized. Our problem is related to three
different is- sues:

1) query optimization;
2) multiple query optimization;
3) materialized view selection.

The existing algorithms for solving one or more of the above
optimization problems can be classified into four categories
according to [3].

Deterministic algorithms usually construct or search a solu-
tion in a deterministic manner either by applying heuristics or
by exhaustive search.

Randomized algorithms pursue a completely different
approach. First, a set of moves are defined. These moves
constitute edges between different solutions in the solution
space. Two solutions are connected by an edge if and only
if they can be transformed into one another by exactly one
move. Each of the algorithms performs a random walk along
the edges according to certain rules, terminating as soon as
no more applicable ones exist or a time limit is exceeded. The
best solution encountered so far will be the result.

Evolutionary algorithms use a randomized search strategy
similar to biological evolution in their search for good solu-
tions. Although an evolutionary algorithm resembles

Terminates as soon as there is no further improvement over
a period or after a predetermined number of generations. The
fittest individual found is the solution.

Hybrid algorithms combine deterministic and randomized
algorithms in various ways, e.g., solutions obtained by de-
terministic algorithms can be used as starting points for ran-

Volume : 1 | Issue : 6 | June 2012 ISSN - 2250-1991

PARIPEX - INDIAN JOURNAL OF RESEARCH X 55

domized algorithms or as initial population members for evo-
lutionary algorithms; a deterministic algorithm can be applied
to the best solution found by an evolutionary algorithm, etc.

In [4], the technique used was to reduce the solution space
by considering only the relevant elements of the multidimen-
sional lattice. Unfortunately, potential good solutions may be
lost in the reduction process. In [2] and [5], the goal was to se-
lect an appropriate set of views that minimizes the total query
response time and/or the cost of maintaining materialized
views, given a limited amount of resources such as material-
ized time, storage space, or total view maintenance time. A
greedy heuristic algorithm was used. The performance of the
algorithm is highly problem dependent because the greedy
nature of the algorithm makes it susceptible to poor local
minima.

In [6], a framework and algorithms were described for an-
analyzing the issues in materialized view selection in order to
achieve the best combination of good query performance and
low view maintenance cost. The 0–1 integer programming
technique was used to obtain the optimal global processing
plan and then a heuristic algorithm was employed to select
the materialized views based on this global processing plan.
It is worth noting that the optimal global processing plan found
in such a way may not lead to the best set of materialized
views. It is possible that another near optimal global process-
ing plan may lead to a better set of materialized views. The
two optimization problems should not be separated.

This paper adopts a holistic approach to materialized view
selection and considers local processing plans, global pro-
cessing plans, and materialized view selection in an integrat-
ed framework and algorithm [7]. The relationships among the
three can be explored and exploited by our algorithms. Hence
algorithms proposed in this paper are more likely to find better
solutions than other methods, [2], [4], [5], [6], [8],[9].

Although evolutionary algorithms have been applied to query
optimization in recent years [3], because of its robustness and
strong global search ability, few attempts have been made to
make use of evolutionary algorithm’s power in solving more
complex problems, such as materialized view selection. In
this paper, we propose several hybrid evolutionary and heu-
ristic algorithms for optimizing global processing plans and
materialized view selection. The hybrid algorithms combine
evolutionary algorithm’s power in global search with heuris-
tic’s ability in fine-grained local search to find a good set of
materialized views. Our experimental results show that the
hybrid algorithms performed better than the existing algo-
rithms. They also performed better than either evolutionary
algorithms or heuristic algorithms alone.

In this paper, the data model is based on selection-projection-
join (SPJ) model rather than the multidimensional model.

The rest of this paper is organized as follows. Section II

explains and formulates the problem of materialized view

Selection based on global processing plans. It also describes
the cost model considered in this paper.

II. MATERIALIZED VIEW SELECTION
Materialized view selection consists of three optimization
problems, i.e., query optimization, multiple query optimiza-
tion, and materialized view selection. It should be pointed out
that a set of locally optimized queries may not be optimal any-
more if multiple queries are considered together. Similarly, an
optimal set of multiple queries does not guarantee the optimal
selection of materialized views because a different set may
lead to better materialized views. It is important to consider all
three problems together in materialized view selection.

A. Query Optimization
A lot of research has been done on this topic. In query optimi-

zation, join operation is one of the most expensive operations.
For simplicity we only consider join operation in this paper.
That is, query optimization will be regarded as join order op-
timization here.

Assume that a database is given a set of relations
. A local processing plan is defined as a query graph, in

which all relations are leaf nodes and all operations (e.g., join,
projection, and selection) are specified as its inner nodes.
Since we only consider join operation, a local processing plan
for a query can be regarded as a binary join tree that consists
of all relations as its leaves and join operations as its inner
nodes. The edges are labeled with the join predicate and join
selectivity. The join predicate maps tuples from the Cartesian
product of the adjacent nodes to false, true depending on
whether the tuple is to be included in the result or not. The join
selectivity is the ratio between the included and total number
of tuples.

The search space for query optimization is the set of all possi-
ble local processing plans. A point in the search space is one
particular plan. Every point of the search space has a cost
associated with it. Since there are lots of methods, such as
nested loop, sort-merge, and hash loop, to perform a join op-
eration, there exist several cost functions with respect to the
processing tree. For example, the left trees in Fig. 1 denote
nested loop join method. For nested loop join with no indices
available, each tuple of the outer relation must be checked
against every tuple of the inner relation, so the cost
. In the solution space, the left-deep processing trees have
been

Of special interest to researchers. The left-deep tree is a tree
where inner relation of each join is a base relation.

Fig. 1. Examples of join trees using nested loop join (left
trees) and sort-merge join (right trees) operations.

TABLE I
POSSIBLE NESTING ORDERS FOR JOIN OPERATIONS
[3]

Volume : 1 | Issue : 6 | June 2012 ISSN - 2250-1991

56 X PARIPEX - INDIAN JOURNAL OF RESEARCH

Given a set of processing plans for a query, the goal of query
optimization is to find a processing plan with the lowest que-
ry processing cost. There has been some work on applying
evolutionary algorithm to query optimization [3]. In this paper,
query optimization is only part of a large problem—material-
ized view selection.

Fig. 2. Global processing plan should be a directed acy-
clic graph (DAG).

B. Multiple Query Optimization
A DW is a repository of integrated information available for
querying analysis. One issue we have to deal with is multiple
query processing. In a systematic look at the problem has
been presented.

Assume that a set of queries Q={Q1,Q2,…..Qn} are given.
For every query , there exists at least one processing plan,
called a local processing plan. A global/multiple processing
plan for corresponds to a global plan that provides a way to
compute the results for queries. A global/multiple pro-
cessing plan can be constructed by choosing one plan for
each query and then merging them together. A locally optimal
plan is referred to as the cost plan for processing a query
individually. This corresponds to query optimization. The glob-
ally optimal plan is referred to as the global processing plan
by merging the common parts of individual local plans.

The multiple query optimizations (MQO) problem can be for-
mulated as follows. Given sets of local processing plans

 , with being the set of possible plans for
query , , is the number of local processing plans
for . Find a global/multiple processing plan by selecting
one plan from each such that the cost (query cost) of the
global/multiple processing plan is minimized.

In general, the union of locally optimal plans does not nec-
essarily form a globally optimal plan. Hence, we cannot find
the globally optimal plan by simply combining locally optimal
plans. A heuristic algorithm is often needed in searching for
a globally optimal plan. In a heuristic search algorithm is pro-
posed, which only examines a fraction of all possible global
processing plans. Some potentially good plans may be lost.
By using the evolutionary approach, our algorithms are capa-
ble of carrying out global search and looking into all possible
combinations of individual plans.

When combining multiple query processing plans, i.e., mul-
tiple join trees, the produced global processing plan should
be a directed acyclic graph (DAG) not a tree. This is shown
in Fig 2.

C. Materialized View Selection
In DW, selected information is extracted in advance and
stored in a repository. A DW can therefore be seen as a set
of materialized views defined over the sources. The prob-
lem we are dealing with now is how to select the views to be
materialized so that the cost of query processing and view
maintenance for all the nodes in a global processing plan is
minimized.

An easy approach would be to use exhaustive search to find
the optimal set of materialized views on the set of queries.
However, this approach is impractical if the search space
is big. It has been shown that materialized view selection is
NP-hard [2]. Heuristic algorithms have to be used to trim the
search space in order to get the results quickly [2], [4], [5].
However, the performance of a heuristic algorithm depends
heavily on the quality of heuristics which may be difficult and/
or costly to obtain in practice. Heuristic algorithms also get
stuck easily in a local optimum. Compared with heuristic algo-
rithms, evolutionary algorithms have many advantages, such
as searching from a population of points using probabilistic
transition rules. In order to avoid an exhaustive search in the
whole solution space and obtain a better solution than that
obtained by heuristic methods, we propose a new evolution-
ary approach to materialized view selection.

D. Cost Model of Materialized View Selection
1) Motivating Example: Our example is taken from a DW ap-
plication which analyzes trends in sales and supply [6]. The
relations and the attributes of the schema for this application
are the following.

Item(I_id, I_name, I_price) Part(P_id, P_name, I-id)

Supplier(S_id, S_name,P_id, City, Cost, Preference)

Sales(I_id, Month, Year, Amount)

There are five queries, as follows.

Q1: Select P_id, min(cost), max(cost) From Part, Supplier

Where Part.P_id Supplier.P_id

And P_name in “spark_plug,” “gas_kit” Group by P_id

Q2: Select I_id,

sum(amount number min_cost) From Item, Sales, Part

Where I_name in “MARUTI,” “NISSAN,” “TOYOTA”

And year 1996

And Item.I_id Sales.I_id And Item.I_id Part.I_id And Part.P_id

(Select P_id, min(cost) as min_cost

From Supplier

Volume : 1 | Issue : 6 | June 2012 ISSN - 2250-1991

PARIPEX - INDIAN JOURNAL OF RESEARCH X 57

Group by P_id) Group by I_id

Q3: Select P_id, month sum(amount) From Item, Sales, Part

Where I_name in “ MARUTI,” “NISSAN,” “TOYOTA”

And year 1996

And Item.I_id Sales.I_id And Part.I_id Item.I_id Group by
P_id, month

Q4: Select I_id, Sum(amount I_price)

From Item, Sales

Where I_name in “ MARUTI,” “NISSAN,” “TOYOTA”

And year 1996

And Item.I_id Sales.I_id

Group by I_id

Q5: Select I_id, avg(amount I_price) From Item, Sales

Where I_name in “ MARUTI,” “NISSAN,” “TOYOTA”

and year 1996

and Item.I_id Sales.I_id

Group by I_id.

Fig. 3 gives a possible global query processing plan for the
five queries listed above, in which the local access plan for in-
dividual queries are merged based on the shared operations
on common data sets. We call it the multiple view processing
plan (MVPP).

The query access frequencies are labeled on the top of each
query node. For simplicity, we assume that all the base rela-
tions Item, Sales, Part, and Supplier are updated only once
for a certain period of time. In Fig. 3, we abbreviate one thou-
sand as “k,” one million as “m,” and one billion as “b.” For
example, the cost for obtaining tmp3 by using tmp1 is 36 m.

Now we have to decide which node(s) to materialize so that
the total query and view maintenance cost is minimal. It is
obvious from this graph that we have several alternatives for
choosing the set of materialized views: e.g.,

1) materialize all the application queries;

2) materialize some of the intermediate nodes (e.g., tmp1,
tmp3, tmp7, etc.);

3) leave all the nonlife nodes virtual.

The cost for each alternative can be calculated in terms of
query processing and view maintenance.

REFERENCES

[1] J. Widom, “Research problems in data warehouse,” in Proc. 4th Int. | Conf. Inform. Knowledge Manage. 1995, | [2] H. Gupta and I. S. Mumick, “Selection of views to
materialize under a maintenance cost constraint,” in Proc. Int. Conf. Database Theory | (ICDT), 1999, pp. 453–470. | [3] M. Steinbrunn, G. Moerkotte, and A. Kemper,
“Heuristic and randomized optimization for the join ordering problem,” Very Large Data Base | J., vol. 6, no. 3, pp. 191–208, 1997. | [4] E. Baralis, S. Paraboschi, and
E. Teniente, “Materialized view selection in a multidimensional database,” in Proc. 23rd Int. Conf. Very Large | Data Base (VLDB), 1997, pp. 156–165. | [5] H. Gupta et
al., “Index selection for olap,” in Proc. Int. Conf. Data Eng. (ICDE), 1997, pp. 208–219. | [6] J. Yang, K. Karlapalem, and Q. Li, “Algorithm for materialized view | design
in data warehousing environment,” in Proc. 23th Int. Conf. Very | Large Data Bases (VLDB), 1997, pp. 136–145. | [7] H. Gupta. “Selection of Views to Materialize
in a Data Warehouse”. Proceedings of International Conference on Database Theory, Athens, Greece 1997. | [8] W. J. Labio, D. Quass, and B. Adelberg, “Physical
database design for data warehouses,” in Proc. Int. Conf. Data Eng. (ICDE), 1997, pp. | 277–288. | [9] K. A. Ross, D. Srivastava, and S. Sudarshan, “Materialized view
maintenance and integrity constraint checking: Trading space for time,” in | Proc. ACM SIGMOD Int. Conf. Manage. Data, 1996, pp. 447–458.

