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A data warehouse (DW) contains multiple views accussed by queries. One of the most important decisions in designing a 

DW is selecting views to materialize for the purpose of efficiently supporting decision making. The search space for possible 
materialalized views is exponentially large. Therefore heuristics have been used to search for a near optimal solution. In this 
paper, we explore the use of an evolutionary algorithm for materialized view selection based on multiple global processing 

plans for queries. We apply a hybrid evolutionary algorithm to solve three related problems. The first is to optimize queries. The 
second is to choose the best global processing plan from multiple global processing plans. The third is to select materialized 
views from a given global processing plan. Our experiment shows that the hybrid evolutionary algorithm de- livers better 

performance than either the evolutionary algorithm or heuristics used alone in terms of the minimal query and maintenance 

cost and the evaluation cost to obtain the minimal cost.

ABSTRACT

I. INTRODUCTION
DATA warehousing is an approach to the integration of data 
from multiple, possibly very large, distributed, heterogeneous 
databases and other information sources. A data warehouse 
(DW) is a repository of integrated information available for 
querying and analysis. To avoid accessing the original data 
sources and increase the efficiency of the queries posed to 
a DW, some intermediate results in the query processing 
are stored in the DW. These intermediate results stored in a 
DW are called materialized views. On a sufficiently abstract 
level, a DW can be seen as a set of materialized views over 
the data extracted from the distributed heterogeneous data-
bases. There are many research issues related to DWs [1], 
among which materialized view selection is one of the most 
challenging ones. On one hand, materialized views speed 
up query processing. On the other hand, they have to be re-
freshed when changes occur to the data sources. Therefore, 
there are two costs involved in materialized view selection: 
the query processing cost and the materialized view mainte-
nance cost. The question we are interested in is: what views 
should be materialized in order to make the sum of the query 
performance and view maintenance cost minimal?

The materialized view selection involves a difficult trade-off 
between query performance and maintenance cost.

•  Materializing all the views in a DW can achieve the best 
performance but at the highest cost of view maintenance.

•  Leaving all the views virtual will have the lowest view 
maintenance cost but the poorest query performance. 
The word “virtual” here means that no intermediate result 
will be saved in the DW.

•  We can have some views materialized (e.g., have those 
shared views materialized), and leave others virtual. In 
this way we may achieve an optimal (or near optimal) bal-
ance between the performance gain and maintenance 
cost. Unfortunately the materialized view selection design 
problem has been proven to be NP-hard [2]. Heuristics 
have to be used in practice to find a near optimal solution 

to this problem.

The problem considered in this paper can be described as fol-
lows. Based on a set of frequently asked DW queries, select 
a set of views to materialize so that the total query and main-
tenance cost is minimized. Our problem is related to three 
different is- sues:

1) query optimization;
2) multiple query optimization;
3) materialized view selection.

The existing algorithms for solving one or more of the above 
optimization problems can be classified into four categories 
according to [3].

Deterministic algorithms usually construct or search a solu-
tion in a deterministic manner either by applying heuristics or 
by exhaustive search.

Randomized algorithms pursue a completely different
approach. First, a set of moves are defined. These moves 
constitute edges between different solutions in the solution 
space. Two solutions are connected by an edge if and only 
if they can be transformed into one another by exactly one 
move. Each of the algorithms performs a random walk along 
the edges according to certain rules, terminating as soon as 
no more applicable ones exist or a time limit is exceeded. The 
best solution encountered so far will be the result.

Evolutionary algorithms use a randomized search strategy 
similar to biological evolution in their search for good solu-
tions. Although an evolutionary algorithm resembles 

Terminates as soon as there is no further improvement over 
a period or after a predetermined number of generations. The 
fittest individual found is the solution.

Hybrid algorithms combine deterministic and randomized 
algorithms in various ways, e.g., solutions obtained by de-
terministic algorithms can be used as starting points for ran-
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domized algorithms or as initial population members for evo-
lutionary algorithms; a deterministic algorithm can be applied 
to the best solution found by an evolutionary algorithm, etc.

In [4], the technique used was to reduce the solution space 
by considering only the relevant elements of the multidimen-
sional lattice. Unfortunately, potential good solutions may be 
lost in the reduction process. In [2] and [5], the goal was to se-
lect an appropriate set of views that minimizes the total query 
response time and/or the cost of maintaining materialized 
views, given a limited amount of resources such as material-
ized time, storage space, or total view maintenance time. A 
greedy heuristic algorithm was used. The performance of the 
algorithm is highly problem dependent because the greedy 
nature of the algorithm makes it susceptible to poor local 
minima.

In [6], a framework and algorithms were described for an- 
analyzing the issues in materialized view selection in order to 
achieve the best combination of good query performance and 
low view maintenance cost. The 0–1 integer programming 
technique was used to obtain the optimal global processing 
plan and then a heuristic algorithm was employed to select 
the materialized views based on this global processing plan. 
It is worth noting that the optimal global processing plan found 
in such a way may not lead to the best set of materialized 
views. It is possible that another near optimal global process-
ing plan may lead to a better set of materialized views. The 
two optimization problems should not be separated.

This paper adopts a holistic approach to materialized view 
selection and considers local processing plans, global pro-
cessing plans, and materialized view selection in an integrat-
ed framework and algorithm [7]. The relationships among the 
three can be explored and exploited by our algorithms. Hence 
algorithms proposed in this paper are more likely to find better 
solutions than other methods, [2], [4], [5], [6], [8],[9].

Although evolutionary algorithms have been applied to query 
optimization in recent years [3], because of its robustness and 
strong global search ability, few attempts have been made to 
make use of evolutionary algorithm’s power in solving more 
complex problems, such as materialized view selection. In 
this paper, we propose several hybrid evolutionary and heu-
ristic algorithms for optimizing global processing plans and 
materialized view selection. The hybrid algorithms combine 
evolutionary algorithm’s power in global search with heuris-
tic’s ability in fine-grained local search to find a good set of 
materialized views. Our experimental results show that the 
hybrid algorithms performed better than the existing algo-
rithms. They also performed better than either evolutionary 
algorithms or heuristic algorithms alone.

In this paper, the data model is based on selection-projection-
join (SPJ) model rather than the multidimensional model.

The rest of this paper is organized as follows. Section II

explains and formulates the problem of materialized view

Selection based on global processing plans. It also describes 
the cost model considered in this paper. 

II. MATERIALIZED VIEW SELECTION
Materialized view selection consists of three optimization 
problems, i.e., query optimization, multiple query optimiza-
tion, and materialized view selection. It should be pointed out 
that a set of locally optimized queries may not be optimal any-
more if multiple queries are considered together. Similarly, an 
optimal set of multiple queries does not guarantee the optimal 
selection of materialized views because a different set may 
lead to better materialized views. It is important to consider all 
three problems together in materialized view selection.

A. Query Optimization
A lot of research has been done on this topic. In query optimi-

zation, join operation is one of the most expensive operations. 
For simplicity we only consider join operation in this paper. 
That is, query optimization will be regarded as join order op-
timization here.

Assume that a database is given a set of relations   
. A local processing plan is defined as a query graph, in 

which all relations are leaf nodes and all operations (e.g., join, 
projection, and selection) are specified as its inner nodes. 
Since we only consider join operation, a local processing plan 
for a query can be regarded as a binary join tree that consists 
of all relations as its leaves and join operations as its inner 
nodes. The edges are labeled with the join predicate and join 
selectivity. The join predicate maps tuples from the Cartesian 
product of the adjacent nodes to false, true  depending on 
whether the tuple is to be included in the result or not. The join 
selectivity is the ratio between the included and total number 
of tuples.

The search space for query optimization is the set of all possi-
ble local processing plans. A point in the search space is one 
particular plan. Every point of the search space has a cost 
associated with it. Since there are lots of methods, such as 
nested loop, sort-merge, and hash loop, to perform a join op-
eration, there exist several cost functions with respect to the 
processing tree. For example, the left trees in Fig. 1 denote 
nested loop join method. For nested loop join with no indices 
available, each tuple of the outer relation must be checked 
against every tuple of the inner relation, so the cost  
. In the solution space, the left-deep processing trees have 
been

Of special interest to researchers. The left-deep tree is a tree 
where inner relation of each join is a base relation.

Fig. 1. Examples of join trees using nested loop join (left 
trees) and sort-merge join (right trees) operations.

TABLE I
POSSIBLE NESTING ORDERS FOR JOIN OPERATIONS 
[3]
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Given a set of processing plans for a query, the goal of query 
optimization is to find a processing plan with the lowest que-
ry processing cost. There has been some work on applying 
evolutionary algorithm to query optimization [3]. In this paper, 
query optimization is only part of a large problem—material-
ized view selection.

Fig. 2. Global processing plan should be a directed acy-
clic graph (DAG).

B. Multiple Query Optimization
A DW is a repository of integrated information available for 
querying analysis. One issue we have to deal with is multiple 
query processing. In a systematic look at the problem has 
been presented.

Assume that a set of queries Q={Q1,Q2,…..Qn} are given. 
For every query , there exists at least one processing plan, 
called a local processing plan. A global/multiple processing 
plan for  corresponds to a global plan that provides a way to 
compute the results for queries. A global/multiple pro-
cessing plan can be constructed by choosing one plan for 
each query and then merging them together. A locally optimal 
plan is referred to as the cost plan for processing a query  
individually. This corresponds to query optimization. The glob-
ally optimal plan is referred to as the global processing plan 
by merging the common parts of individual local plans.

The multiple query optimizations (MQO) problem can be for-
mulated as follows. Given sets of local processing plans 

  , with   being the set of possible plans for 
query ,   ,  is the number of local processing plans 
for . Find a global/multiple processing plan by selecting 
one plan from each  such that the cost (query cost) of the 
global/multiple processing plan is minimized.

In general, the union of locally optimal plans does not nec-
essarily form a globally optimal plan. Hence, we cannot find 
the globally optimal plan by simply combining locally optimal 
plans. A heuristic algorithm is often needed in searching for 
a globally optimal plan. In a heuristic search algorithm is pro-
posed, which only examines a fraction of all possible global 
processing plans. Some potentially good plans may be lost. 
By using the evolutionary approach, our algorithms are capa-
ble of carrying out global search and looking into all possible 
combinations of individual plans.

When combining multiple query processing plans, i.e., mul-
tiple join trees, the produced global processing plan should 
be a directed acyclic graph (DAG) not a tree. This is shown 
in Fig 2.

C. Materialized View Selection
In DW, selected information is extracted in advance and 
stored in a repository. A DW can therefore be seen as a set 
of materialized views defined over the sources. The prob-
lem we are dealing with now is how to select the views to be 
materialized so that the cost of query processing and view 
maintenance for all the nodes in a global processing plan is 
minimized.

An easy approach would be to use exhaustive search to find 
the optimal set of materialized views on the set of queries. 
However, this approach is impractical if the search space 
is big. It has been shown that materialized view selection is 
NP-hard [2]. Heuristic algorithms have to be used to trim the 
search space in order to get the results quickly [2], [4], [5]. 
However, the performance of a heuristic algorithm depends 
heavily on the quality of heuristics which may be difficult and/
or costly to obtain in practice. Heuristic algorithms also get 
stuck easily in a local optimum. Compared with heuristic algo-
rithms, evolutionary algorithms have many advantages, such 
as searching from a population of points using probabilistic 
transition rules. In order to avoid an exhaustive search in the 
whole solution space and obtain a better solution than that 
obtained by heuristic methods, we propose a new evolution-
ary approach to materialized view selection.

D. Cost Model of Materialized View Selection
1) Motivating Example: Our example is taken from a DW ap-
plication which analyzes trends in sales and supply [6]. The 
relations and the attributes of the schema for this application 
are the following.

Item(I_id, I_name, I_price) Part(P_id, P_name, I-id)

Supplier(S_id, S_name,P_id, City, Cost, Preference)

Sales(I_id, Month, Year, Amount)

There are five queries, as follows.

Q1: Select P_id, min(cost), max(cost) From Part, Supplier

Where Part.P_id Supplier.P_id

And P_name in “spark_plug,” “gas_kit”  Group by P_id

Q2: Select I_id,

sum(amount number min_cost) From Item, Sales, Part

Where I_name in “MARUTI,” “NISSAN,” “TOYOTA”

And year 1996

And Item.I_id Sales.I_id And Item.I_id Part.I_id And Part.P_id

(Select P_id, min(cost) as min_cost

From Supplier
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Group by P_id) Group by I_id

Q3: Select P_id, month sum(amount) From Item, Sales, Part

Where I_name in “ MARUTI,” “NISSAN,” “TOYOTA”

And year 1996

And Item.I_id Sales.I_id And Part.I_id Item.I_id Group by 
P_id, month

Q4: Select I_id, Sum(amount I_price)

From Item, Sales

Where I_name in “ MARUTI,” “NISSAN,” “TOYOTA”

And year 1996

And Item.I_id Sales.I_id

Group by I_id

Q5: Select I_id, avg(amount I_price) From Item, Sales

Where I_name in “ MARUTI,” “NISSAN,” “TOYOTA”

and year 1996

and Item.I_id Sales.I_id

Group by I_id.

Fig. 3 gives a possible global query processing plan for the 
five queries listed above, in which the local access plan for in-
dividual queries are merged based on the shared operations 
on common data sets. We call it the multiple view processing 
plan (MVPP).

The query access frequencies are labeled on the top of each 
query node. For simplicity, we assume that all the base rela-
tions Item, Sales, Part, and Supplier are updated only once 
for a certain period of time. In Fig. 3, we abbreviate one thou-
sand as “k,” one million as “m,” and one billion as “b.” For 
example, the cost for obtaining tmp3 by using tmp1 is 36 m.

Now we have to decide which node(s) to materialize so that 
the total query and view maintenance cost is minimal. It is 
obvious from this graph that we have several alternatives for 
choosing the set of materialized views: e.g.,

1)  materialize all the application queries;

2)  materialize some of the intermediate nodes (e.g., tmp1, 
tmp3, tmp7, etc.);

3)  leave all the nonlife nodes virtual.

The cost for each alternative can be calculated in terms of 
query processing and view maintenance.
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