
Volume : 1 | Issue : 5 | May 2012 ISSN - 2250-1991

PARIPEX - INDIAN JOURNAL OF RESEARCH X 205

Research Paper

* Research Scholar, Sathyabama University, Chennai, Tamil Nadu, India

** Professor, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, India

Information Technology

Identifying Crosscutting Concerns for

Software

 Requirement Engineering

* Velayutham Pavanasam ** Chandrasekaran Subramaniam

Keywords : Concerns; Crosscutting; Requirement Engineering; Viewpoints; Functional Requirements

Viewpoints, goals and use cases are the various methods through which the separation of stakeholders concerns can be

achieved. Many techniques have been developed for crosscutting concern identification. Crosscutting concerns enhances
the corrections of the software design, reduces software complexity, saves cost, improves traceability among requirements,

avoids coupling between requirements and eases function modularization. There is a large impact of crosscutting concerns

during the early stages of software development. Unique requirements are identified and structured into concerns such as use
cases and viewpoints. The various steps in crosscutting concerns have been discussed in this work.

ABSTRACT

Introduction
Requirement engineering involves information collection and
structuring tasks which can be categorized into requirement
gathering and requirement analysis. Output of the require-
ment gathering will be the requirement documents. These
documents will be analyzed in the requirement analysis
stage. Unique requirements are identified and structured
into concerns. Examples include use cases, goals and view-
points. The documents will be signed by the stakeholders
during requirement analysis stage known as the specification
document [1]. Aspect-oriented software development advo-
cates the separation of crosscutting concerns during the soft-
ware development. Most research in this area has focused
only on the design and implementation phases of the soft-
ware lifecycle. The early aspects initiative refers to crosscut-
ting properties at the requirement and architecture level [2].
Aspect provide a structuring construct that allows program
code to be written or re-written to facilitate the representation
of multiple concerns and to alleviate tangling of overlapping,
aka cross-cutting concerns [3]. Separation of concerns refers
to the ability of identifying, encapsulating and manipulating
parts of the software that are crucial to a particular purpose.
Separation of concerns reduces the software complexity
and enhances understandability and traceability throughout
the software development process. It also minimizes the im-
pact of change promoting evolution [4]. Problems caused by
crosscutting concerns can be observed in legacy software
systems in particular, either because legacy system cannot
be easily changed due to their design or because old pro-
gramming language lack the features required. The program-
mers are then forced to use an idiom for the implementation
of a concern at each and every location in the source code
[5]. Automated techniques apply their rules consistently, but
they might not find the concerns that the developer is interest-
ed in. Execution trace-based techniques, for instance, miss
concerns that cannot be isolated by a given test run. These
techniques miss nonfunctional concerns, such as logging
and error handling. Aspect mining and static analysis tech-
niques are useful at generating suggestions for possible con-
cerns, but human interpretation is still required. Another level
of inconsistency is introduced when concerns are assigned
to code because existing guidelines are ambiguous. These
inconsistencies ensure that experimental results are not re-
peatable and lead to misguided assessments of the nature

and extent of crosscutting in the program [6]. Use cases are
the main structure in requirements engineering of RUP and
many others software engineering process definitions. They
describe several requirements in only one use case, i.e., it
is a composite requirement. A use case comprises the be-
havioral requirements in its main structure and also contains
sections for others types of requirements specification, such
as business rules and data input. The RUP style use cases
templates define a section named special requirements as
the place to put this kind of requirement. Use case sections
and characteristics are decomposed in requirements types.
These types are then qualified and classified as representing
or not a crosscutting concern. AICC-UC concern approach
is based on the notion that the base concerns are primary
actor’s main goals on each use case. Use case must cover
interests of primary actor and protect interests of all others
stakeholders. Functional or nonfunctional requirements that
are not directly related to the accomplishment of main goal
crosscut the base concern to protect the interest of stakehold-
ers in the use case [7]. A tool, 3CI that automatically identifies
crosscutting concerns and their relationships at the require-
ment level is described. The tool utilizes NLP techniques to
extract linguistic properties and exploits the properties to
identify crosscutting concerns and its influences in a require-
ments document. NLP techniques such as part-of-speech
analysis, word frequency analysis and dominant verb analy-
sis contribute in the processing of software requirements
phrases to assist aspects mining [8].

Identifying Crosscutting Concerns
According to Wikipedia, cross-cutting concerns are aspects of
a program which affect other concerns. These concerns often
cannot be cleanly decomposed from the rest of the system in
both the design and implementation, and can result in either
scattering (code duplication), tangling (significant dependen-
cies between systems), or both. Consider an application is
written for handling medical records, the bookkeeping and
indexing of such records is a core concern, while logging a
history of changes to the record database or user database,
or an authentication system would be cross-cutting concerns
since they touch more parts of the program. A requirement
in requirement specification document represents a concern.
The separation of concerns has been emphasized by soft-
ware engineering principles for better understanding of con-

Volume : 1 | Issue : 5 | May 2012 ISSN - 2250-1991

206 X PARIPEX - INDIAN JOURNAL OF RESEARCH

cerns. Object oriented paradigm supports the modularization
of concern. Improper implementation of the feature and the
limitations of programming language construct leads to scat-
tered and tangled implementation of the concern.

Every concern might not get modularized into a separate
module. Such concerns whose implementation is scattered
over more than one module are called crosscutting concerns.
Such concerns lead to tangling of code. Empirical studies
have revealed that scattered and tangled code degrades
the code quality. The negative impact of scattered and tan-
gled code is reflected not only by internal quality metrics but
also by the external quality metrics. Poor modularization of
crosscutting concerns results in source code which has
more defects and is difficult to maintain. For development of
good quality software, it is essential to identify crosscutting
concerns. Identification of crosscutting concerns at different
stages of software development is essential for 3 reasons.
First, for refactoring of legacy system to aspect oriented sys-
tem. Secondly, for modularized implementation of concern,
its crosscutting nature needs to be identified at analysis and
design level. Thirdly, for appropriate distribution of testing ef-
fort error prone crosscutting code needs to be identified [9].

Software systems are bound to suffer from a phenomenon
known as crosscutting concerns. Crosscutting concerns are
concerns – pieces of functionality – that cannot fit neatly into
a system’s design. Example of crosscutting concerns is error
or exception handling. Since each module deals with excep-
tional situations, code for error-handling is scattered across
system. When stakeholder’s requirements are represented
by viewpoints, the overlapping requirement denotes overlap-
ping crosscutting requirements. They provide useful input into
aspect-oriented design and implementation and manage any
inconsistency which arises during overlapping. When identi-
fication and documentation of crosscutting requirements and
influences are conceivable, various stages of the develop-
ment and maintenance processes are:

• While requirements modeling: After requirements have
been elicited they should be modeled. Modeling is a high-
ly analytic activity whose goals are for example to struc-
ture the requirements (normally top-down), to identify and
model dependencies and other relations among them,
to identify and eliminate inconsistencies and to identify
and clarify ambiguities and vagueness. It would of course
also be natural and highly desirable to identify and model
crosscutting requirements and influences already at this
stage.

• While writing the requirements specification: Writing a
specification normally follows requirements modeling.
However, it is often the case that a specification is writ-
ten directly after requirements have been elicited thus
bypassing the modeling stage. In this case writing the
specification is a highly analytic process as well. It should
then also include identifying and documenting crosscut-
ting requirements and influences.

• After writing the requirements specification: Although it is
best to identify and document crosscutting requirements
and influences when they arise, i.e. during requirements
analysis, we have to face the fact that countless require-
ments specifications exist, written without the aspect of
crosscutting requirements in mind. With hindsight how-
ever, it may become desirable for developers to identify
them in such documents. It then becomes necessary to
“mine” crosscutting requirements and influences from
them.

• During downstream activities: The crosscutting nature of
some requirements and their influences may and will of
course also be detected during activities later in devel-
opment or maintenance and should then be documented
[10].

The framework of aspect-oriented software reverse engi-
neering is proposed for the solution of comprehension and
evolution problems of crosscutting properties in legacy sys-
tem. Based on it, an approach of use-cases driven formal
concept analysis is discussed. The goal of this approach is
recovering system’s crosscutting concerns on requirements
level. Execution profiles of legacy system are analyzed us-
ing concept lattices and the invoked computational units that
traverse system’s use-case models can be identified with this
approach. Finally, they can be abstracted into early-aspects
for re-engineering of the legacy systems with AOSD (Aspect-
Oriented Software Development). Compared with existing
aspect-mining techniques, which are mainly applied for re-
factoring legacy system’s program source codes, this given
approach is more effective when it is used for comprehending
and evolving legacy system on higher abstract level. The re-
sult shows that quite a few crosscutting properties of legacy
system can be recovered at requirements level with the intro-
duced domain knowledge with the help of a case study [11].

Steps in Crosscutting Concerns
Various steps in crosscutting requirements are:
· Identify and specify functional requirements
· Identify and specify crosscutting concerns
· Integrate functional requirements with crosscutting con-

cerns

Step 1: Identify and specify functional requirements: Require-
ments can be divided into functional and non-functional re-
quirements. It is important to identify the use cases and ac-
tors. When a use case occurs, a template can be created
describing the use case in a detailed manner.

Step2: Identify and specify crosscutting concerns: Non-
functional requirements are global properties crosscutting
concerns that can influence part or the whole system. Cross-
cutting concern can be mapped into a function and aspect.
Extensible Markup Language (XML) can be used to specify
the crosscutting concerns and requirements. An iterative and
incremental approach must be followed to fill in the informa-
tion available in the template.

Step3: Integrate functional requirements with crosscutting
concerns: The complete system can be obtained by integrat-
ing the functional requirements with crosscutting concerns.
Unified Modeling Language (UML) diagrams can be used
to perform this integration efficiently. UML includes a set of
graphic notation techniques to create visual models of soft-
ware-intensive systems. Use case diagram includes a new
case during higher abstraction level and makes the crosscut
initial use cases.

These steps can be represented as shown in figure.1.

Fig. 1. Steps in Crosscutting Concerns

Integrate

Integrate

functional

requirements

with

crosscutting

concerns

Specify

Specify

crosscutting

concerns

Identify actors

and use cases Identify

Volume : 1 | Issue : 5 | May 2012 ISSN - 2250-1991

PARIPEX - INDIAN JOURNAL OF RESEARCH X 207

Conclusion
It is essential to apply the separation of crosscutting concerns
during all stages of software development through which
reusability, maintainability and comprehensibility improves.
Even though large numbers of existing methods can be used
for identifying crosscutting concerns, it is found that none of
these methods can automatically identify crosscutting con-

cern. Both functional non-functional requirements must be
identified and their elicitation must be accurate and com-
plete. Steps in crosscutting concerns have been proposed so
that separation of concerns at the requirements level can be
achieved. Users can easily identify and manage crosscutting
concerns for software requirement engineering.

REFERENCES

B.S. Ali & M.Z. Kasirun, “A Review on Approaches for Identifying Crosscutting Concerns”, IEEE International Conference on Advanced Computer Theory and Engineering
(ICACTE), pp. 855-859, 2008. | Abdelkrim Amirat, “Towards a Requirements Model for Crosscutting Concerns”, Information Technology Journal, Vol. 6(3), pp. 332-337,
2007.| Bashar Nuseibeh , “Crosscutting Concerns”, 3rd International Conference on Aspect-Oriented Software Development (AOSD’04), pp. 3-4, 2004. | A. Moreira, J.
Araujo & I. Brito, “Crosscutting Quality Attributes for Requirements Engineering”, 14th International Conference on Software Engineering and Knowledge Engineering
(SEKE’02), pp. 167-174, 2002. | Magiel Bruntink, “Analysis and Transformation of Idiomatic Crosscutting Concerns in Legacy Software Systems”, IEEE 23rd International
Conference on Software Maintenance (ICSM), pp. 499-500, 2007. | M. Eaddy, A. Aho & C. Murphy, “Identifying, Assigning and Quantifying Crosscutting Concerns”,
First International Workshop on Assessment of Contemporary Modularization Techniques (ACoM’07), pp. 1–6, 2007. | P. Pretes, F. Costa, F. Silveria, et al. “AICC-
UC An Approach to Identify Crosscutting Concerns Based on Use Cases”, Latin America Workshop on Aspect-Oriented Software Development (LA-WASP), 2011. |
B.S. Ali & M.Z. Kasirun, “A Review on Approaches for Identifying Crosscutting Concerns”, IEEE International Conference on Computational Intelligence for Modelling
Control and Automation, pp. 351-355, 2008. | A. Kaur & K. Johari, “Identification of Crosscutting Concerns: A Survey”, International Journal of Engineering Science and
Technology, Vol. 1(3), pp. 166-172, 2009. | Lars Rosenhainer, “Identifying Crosscutting Concerns in Requirements Specification, 2004. | S. Yang & P. Zhong,”Recovering
Crosscutting Concern from Legacy Software Based on Use-Cases Driven Formal Concept Analysis”, International Conference on Computational Intelligence and
Software Engineering (CiSE), pp. 1-4, 2010

