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ABSTRACT

Integration of commercial of the shelf (COTS) software components is increasing rapidly with the development of computer 

technology. It becomes necessary to ensure the reliability of components as well the reliability of overall system. This paper 

presents a new approach to analyze the reliability of component-based software, based on the reliabilities of the individual 

components. In order to realize the reuse of components effectively in Component Based Software Development, it is required 

to measure the reliability of components. In this paper, we adopt Genetic Algorithms based approach to estimate the reliability 

of component.

I.  Introduction to CBSE
Component Based Software Engineering (CBSE) is a para-
digm that aims at constructing and designing systems using 
a pre-defined set of software components explicitly created 
for reuse. According to Clements [1], CBSE embodies the “the 
‘buy, don’t build’-- philosophy”. He also says about CBSE that 
“in the same way that early subroutines liberated the program-
mer from thinking about details, CBSE shifts the emphasis 
from programming to composing software systems”. Reliability: 
Software reliability is defined as the probability of failure –free 
software operation for a specified period of time in a specified 
environment. The reliability of a software product is usually 
defined to be “the probability of execution without failure for 
some specified interval of natural units or time” [2]. This is an 
operational measure that varies with how the product is used. 
Reliability of a component is measured in the context of how 
the component will be used. That context is described in an op-
erational profile.  Reliability of a piece of software may be com-
puted or measured. If the software has not been built yet, its 
reliability can be computed from a structural model and the reli-
abilities of the individual parts that will be composed to form the 
software. There is error associated with this technique due to 
emergent behaviors, i.e. interaction effects, which arise when 
the components must work together. If the software is already 
assembled, the reliability can be measured directly. The meas-
urement is taken by repeatedly executing the software over a 
range of inputs, as guided by the operational profile. The test 
results for the range of values are used to compute the prob-
ability of successful execution for a specific value. The error 
associated with this approach arises from the degree to which 
the actual operation deviates from the hypothesized operation 
assumed in the operational profile.

II. What is reliability ?
Reliability is the probability that an item will perform a required 
function without failure under stated conditions for a stated 
period of time [3]. Reliability refers to the consistency of a 
measure. A test is considered reliable if we get the same re-
sult repeatedly. For example, if a test is designed to measure 
a trait (such as introversion), then each time the test is ad-
ministered to a subject, the results should be approximately 
the same. Unfortunately, it is impossible to calculate reliability 
exactly, but there several different ways to estimate reliability.

According to ANSI, Software Reliability is “the probability of 
failure-free software operation for a specified period of time 

in a specified environment”. Software Reliability is also an im-
portant factor affecting system reliability [4].

III. Genetic algorithm
Genetic Algorithm
Genetic Algorithms (GAs) were developed by Prof. John Hol-
land and his students at the University of Michigan during the 
1960s and 1970s. 

To use a genetic algorithm, you must represent a solution to 
your problem as a genome (or chromosome) [5]. The genetic 
algorithm then creates a population of solutions and applies 
genetic operators such as mutation and crossover to evolve 
the solutions in order to find the best one(s). The three most 
important aspects of using genetic algorithms are: (1) defi-
nition of the objective function, (2) definition and implemen-
tation of the genetic representation, and (3) definition and 
implementation of the genetic operators. Once these three 
have been defined, the generic genetic algorithm should work 
fairly well. Beyond that you can try many different variations 
to improve performance, find multiple optima (species - if they 
exist), or parallelize the algorithms [10].

However, genetic algorithms do not appear to suffer from local 
minima as badly as neural networks do. Genetic algorithms 
are based on the model of evolution, in which a population 
evolves towards overall fitness, even though individuals per-
ish. Evolution dictates that superior individuals have a better 
chance of reproducing than inferior individuals, and thus are 
more likely to pass their superior traits on to the next genera-
tion. This “survival of the fittest” criterion was first converted to 
an optimization algorithm by Holland in 1975 [6], and is today 
a major optimization technique for complex, nonlinear prob-
lems. In a genetic algorithm, each individual of a population 
is one possible solution to an optimization problem, encoded 
as a binary string called a chromosome. A group of these in-
dividuals will be generated, and will compete for the right to 
reproduce or even be carried over into the next generation 
of the population. Competition consists of applying a fitness 
function to every individual in the population; the individuals 
with the best result are the fittest. The next generation will 
then be constructed by carrying over a few of the best indi-
viduals, reproduction, and mutation. 

Reproduction is carried out by a “crossover” operation, simi-
lar to what happens in an animal embryo. Two chromosomes 
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exchange portions of their code, thus forming a pair of new 
individuals. In the simplest form of crossover, a crossover 
point on the two chromosomes is selected at random, and 
the chromosomes exchange all data after that point, while 
keeping their own data up to that point. In order to introduce 
additional variation in the population, a mutation operator will 
randomly change a bit or bits in some chromosome(s). Usu-
ally, the mutation rate is kept low to permit good solutions to 
remain stable. According to Sultan H. Aljahadi and Moham-
med E. El-Telbany [7], the two most critical elements of a ge-
netic algorithm are the way solutions are represented, and the 
fitness function, both of which are problem-dependent. The 
coding for a solution must be designed to represent a pos-
sibly complicated idea or sequence of steps. The fitness func-
tion must not only interpret the encoding of solutions, but also 
must establish a ranking of different solutions. The fitness 
function is what will drive the entire population of solutions 
towards a globally best Figure 1, illustrates the basic steps in 
the canonical genetic algorithms.

Genetic algorithms are based on the model of evolution, in 
which a population evolves towards overall fitness, even 
though individuals perish. Evolution dictates that superior in-
dividuals have a better chance of reproducing than inferior 
individuals, and thus are more likely to pass their superior 
traits on to the next generation. This “survival of the fittest” 
criterion was first converted to an optimization algorithm by 
Holland in 1975 [9], and is today a major optimization tech-
nique for complex, nonlinear problems. In a genetic algorithm, 
each individual of a population is one possible solution to an 
optimization problem, encoded as a binary string called a 
chromosome. A group of these individuals will be generated, 
and will compete for the right to reproduce or even be carried 
over into the next generation of the population.

Figure 1: Genetic algorithm

IV. Parameters of genetic algorithm

The parameters of Genetic Algorithm are as follows

o Population Size.
o Number of Generation.
o Crossover Rate.
o Mutation Rate.
o Selection Method.
o Reproduction Rate.

V. Mapping of genetic algorithm with software reliability
GA is a powerful machine learning technique and optimization 
techniques to estimate the parameters of well known reliably 
growth models.

•	 Fitness	function:	(for	Reliability	estimation).
Fitness = (∑i=1 to m (xi – x^i)2 Dim )1/2                                

Where xi is the real value, x^i is the estimated value, Di is 
the weight of each example, and m is the size of the dataset.

•	 Regression	Model
The regression model is given by Sultan H. Aljahdali and Mo-
hammed E. El-Telbany [7] as follows.

Time series analysis deals with the problems of identification 
of basic characteristic features of time series, as well as with 
discovering - from the observation data on which the time 
series is built - the internal time series structure to predict 
time series data values which help in deciding about the sub-
sequent actions to be taken. One of most used times series 
models is the auto regression model.

The AR model can be described by the following equation:

Where  is the previous observed number of faults and  (i =1, 
2,….,n). The value of n is referred to as the “order” of the 
model,  and  (i =1,2,…,n) are the model parameter.

VI. Steps of Genetic Algorithm

•	 Steps	of	Genetic	Algorithm
1. Initialize population gene.
2. Calculate fitness value.
3. Select mating pair based on fitness.
4. Crossover to produce offspring.
5. Mutate offspring gene.
6. Insert offspring in to population.
7. Stop criteria met? If no go to step 2 else step 8.
8. Finish.

VII. Existing techniques
In component based software system, if a system consists of 
n components with reliabilities denoted by R1,…, Rn respec-
tively, the reliability of system is an execution path, 1, 3, 2, 
3, 2, 3, 4, 3, n, is given by Rs. Thus, the objective here is to 
estimate the reliability of a system by averaging over all path 
reliabilities. For this propose system consider the architecture 
of software as shown in Figure 2. Assume that, the application 
consists of n components, and has a single initial state de-
noted by 1, and a single absorbing or exit state denoted by n.

The expected reliability of system is defined by the following 
equation:

Where:      E[Rs] is the estimated reliability of the system.

                  Rim1,i  is the reliability of individual component.

Thus to obtain the expected reliability of the application, we 
need to obtain E[Rim1,i] which is the expected reliability of 
component i for a single execution. From the Taylor series 
expression of the function of a random variable [8] we have:

Where:  Var[m1,i] is the variance of individual component.

Since the number of visits to the absorbing state n is always 
1, E[m1,n] = 1 and Var[m1,n] = 0 and hence E[Rnm1,n] = Rn. 
Equation (3) can be written as:

                                                                   
The result is shown in Table 2 according to equation (4) and 
(5)

p1,2 = 0.60 p1,3 = 0.20 p1,4 = 0.20
p2,3 = 0.70 p2,5 = 0.30
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p3,5 = 1.00
p4,5 = 0.40 p4,6 = 0.60
p5,7 = 0.40 p5,8 = 0.60
p6,3 = 0.30 p6,7 = 0.30 p6,8 = 0.10 p6,9 = 0.30
p7,2 = 0.50 p7,9 = 0.50
p8,4 = 0.25 p8,10 = 0.75
p9,8 = 0.10 p9,10 = 0.90
Table 1: Transaction probability of components

The system reliability is 0.8267 using equation (3).

Figure 2: Architecture of Component Base Software

Com-
ponent

No.

Assume 
Reliability

(Ra)

Mean
(m)

Variance
(v)

Estimated 
Reliability 

(Rs)

1 0.9990 1.0000 0.0000 0.9990

2 0.9800 0.9077 0.6444 0.9819

3 0.9900 0.9107 0.5499 0.9909

4 0.9700 0.4184 0.3928 0.9874

5 0.9500 1.3504 0.7185 0.9337

6 0.9950 0.2510 0.2319 0.9987

7 0.9850 0.6155 0.6261 0.9908

8 0.9500 0.8737 0.4255 0.9564

9 0.9750 0.3831 0.2462 0.9904

10 0.9850 1.0000 0.0000 0.985

Table 2: Estimated reliability using existing technique

VIII. Proposed Methodology
In this section, I propose a Genetic Algorithm based approach 
for estimating reliability for component based systems. It is of-
ten impossible to estimate software quality attributes directly. 
For example, attributes (say, reliability, etc.) are affected by 
many different factors, and there is no straightforward method 
to measure them. To estimate reliability of CBS, one needs 
to establish a relationship of the factors with reusability to 
achieve the desired goal. Following parameter has been iden-
tified, which will influence reusability of CBS:

• Assume Reliability (Ra) of component: We can assume 
the reliability of component according to its transaction 
probability from one component to other component. 

• Mean (m) value of component: Denotes the number of 
visits to state j starting from state i before the process 
absorbed. Changing in mean value of component may 
affect the reliability of component. We can calculate the 
mean value using DTMC [8] method.

• Variance (v) value of component: Denotes the number of 
visits to state j starting from state i before the process 
absorbed. Changing in mean value of component may 
affect the reliability of component. We can calculate the 
variance value using DTMC [8] method.

We assume that the architecture of the application modeled 
using a Desecrate Time Markov Chain (DTMC) and the time 
spent by the application in each component per visit is a ran-
dom variable with known mean and variance. We also as-
sume that the reliability of each component per visit is known. 
We assume that the application consists of n components, 
and has a single initial stage denoted by 1, and a single ab-
sorbing state or exit state denoted by n. We also assume that 
the components fail independently of each other as well as 
successive executions.

IX. Conclusion
We can estimate the reliability of individual component of the 
system and according to this individual component reliability 
we can estimate the reliability of the whole system. We can 
estimate overall reliability of system considering the contri-
bution of a component’s reliability depending upon its usage 
time and the path propagation probability for possible paths of 
execution. By optimizing the assumed reliability of individual 
component and according to this we can optimize the reliabil-
ity of individual component and whole system.

REFERENCES

[1] M. Sparling: "Lessons Learned through Six Years of Component Based Development", Communications of the ACM, 2003. | [2] Musa, John. Software Reliability 
Engineering, New York,NY, McGraw-Hill, 1998. | [3] J.D Musa (1987), Software Reliability measurement, prediction, application McGRAW-HILL International Edition. 
ISBN 0-07-100208-1 | [4] Michael R. Lyu (May 2005) Handbook of Software Reliability Engineering: Introduction. IEEE Computer Society Press and McGraw-Hill Book 
Company | [5] Alan wood (September 1996) TANDEM Software Reliability Growth Models. Technical report 96.1, part no 130056. | [6] Jung-Hua Lo, Chin-Yu Huang, 
Sy-Yen Kuo, and Michael R. Lyu (2003), Sensitivity Analysis of Software Reliability for Component-Based Software Applications. 27th Annual International Computer 
Software and Applications Conference, ISBN: 0-7695-2020-0. | [7] Aljahdali and Mohammed E. El-Telbany (JUNE 2008, Genetic Algorithms for Optimizing Ensemble 
of Models in Software Reliability Prediction”, ICGST-AIML Journal, pp 5-13, Volume 8. | [8] Swapna S. Gokhale. Kishor S. Trivedi (2002), Reliability Prediction and 
Sensitivity Analysis Based on Software Architecture, IEEE, Software reliability, pp 64-75, ISBN: 0-7695-1763-3. | [9] Holland J., Adaption in Natural and Artificial Systems, 
University of Michigan Press, Ann Arbor, Michigan, 1975. | [10] S. Rajasekaran, “Neural Networks Fuzzy Logic and Genetic Algorithms Synthesis and Application,” PHI, 
ISBN 81-203-2186-3. 2003. 


