
Volume : 1 | Issue : 11 | November 2012 ISSN - 2250-1991

PARIPEX - INDIAN JOURNAL OF RESEARCH X 17

Research PaperResearch Paper

Keywords :

* Dept. of CSE/IT, B. H. Gardi College of engineering & Technology Rajkot, India

** Dept. of CSE/IT, B. H. Gardi College of engineering & Technology Rajkot, India

Study of Genetic Approach in Estimating

Reliability of Component Based Software

*Harish Rathod **Mahesh Parmar

Computer Science

ABSTRACT

Integration of commercial of the shelf (COTS) software components is increasing rapidly with the development of computer

technology. It becomes necessary to ensure the reliability of components as well the reliability of overall system. This paper

presents a new approach to analyze the reliability of component-based software, based on the reliabilities of the individual

components. In order to realize the reuse of components effectively in Component Based Software Development, it is required

to measure the reliability of components. In this paper, we adopt Genetic Algorithms based approach to estimate the reliability

of component.

I. Introduction to CBSE
Component Based Software Engineering (CBSE) is a para-
digm that aims at constructing and designing systems using
a pre-defined set of software components explicitly created
for reuse. According to Clements [1], CBSE embodies the “the
‘buy, don’t build’-- philosophy”. He also says about CBSE that
“in the same way that early subroutines liberated the program-
mer from thinking about details, CBSE shifts the emphasis
from programming to composing software systems”. Reliability:
Software reliability is defined as the probability of failure –free
software operation for a specified period of time in a specified
environment. The reliability of a software product is usually
defined to be “the probability of execution without failure for
some specified interval of natural units or time” [2]. This is an
operational measure that varies with how the product is used.
Reliability of a component is measured in the context of how
the component will be used. That context is described in an op-
erational profile. Reliability of a piece of software may be com-
puted or measured. If the software has not been built yet, its
reliability can be computed from a structural model and the reli-
abilities of the individual parts that will be composed to form the
software. There is error associated with this technique due to
emergent behaviors, i.e. interaction effects, which arise when
the components must work together. If the software is already
assembled, the reliability can be measured directly. The meas-
urement is taken by repeatedly executing the software over a
range of inputs, as guided by the operational profile. The test
results for the range of values are used to compute the prob-
ability of successful execution for a specific value. The error
associated with this approach arises from the degree to which
the actual operation deviates from the hypothesized operation
assumed in the operational profile.

II. What is reliability ?
Reliability is the probability that an item will perform a required
function without failure under stated conditions for a stated
period of time [3]. Reliability refers to the consistency of a
measure. A test is considered reliable if we get the same re-
sult repeatedly. For example, if a test is designed to measure
a trait (such as introversion), then each time the test is ad-
ministered to a subject, the results should be approximately
the same. Unfortunately, it is impossible to calculate reliability
exactly, but there several different ways to estimate reliability.

According to ANSI, Software Reliability is “the probability of
failure-free software operation for a specified period of time

in a specified environment”. Software Reliability is also an im-
portant factor affecting system reliability [4].

III. Genetic algorithm
Genetic Algorithm
Genetic Algorithms (GAs) were developed by Prof. John Hol-
land and his students at the University of Michigan during the
1960s and 1970s.

To use a genetic algorithm, you must represent a solution to
your problem as a genome (or chromosome) [5]. The genetic
algorithm then creates a population of solutions and applies
genetic operators such as mutation and crossover to evolve
the solutions in order to find the best one(s). The three most
important aspects of using genetic algorithms are: (1) defi-
nition of the objective function, (2) definition and implemen-
tation of the genetic representation, and (3) definition and
implementation of the genetic operators. Once these three
have been defined, the generic genetic algorithm should work
fairly well. Beyond that you can try many different variations
to improve performance, find multiple optima (species - if they
exist), or parallelize the algorithms [10].

However, genetic algorithms do not appear to suffer from local
minima as badly as neural networks do. Genetic algorithms
are based on the model of evolution, in which a population
evolves towards overall fitness, even though individuals per-
ish. Evolution dictates that superior individuals have a better
chance of reproducing than inferior individuals, and thus are
more likely to pass their superior traits on to the next genera-
tion. This “survival of the fittest” criterion was first converted to
an optimization algorithm by Holland in 1975 [6], and is today
a major optimization technique for complex, nonlinear prob-
lems. In a genetic algorithm, each individual of a population
is one possible solution to an optimization problem, encoded
as a binary string called a chromosome. A group of these in-
dividuals will be generated, and will compete for the right to
reproduce or even be carried over into the next generation
of the population. Competition consists of applying a fitness
function to every individual in the population; the individuals
with the best result are the fittest. The next generation will
then be constructed by carrying over a few of the best indi-
viduals, reproduction, and mutation.

Reproduction is carried out by a “crossover” operation, simi-
lar to what happens in an animal embryo. Two chromosomes

Volume : 1 | Issue : 11 | November 2012 ISSN - 2250-1991

18 X PARIPEX - INDIAN JOURNAL OF RESEARCH

exchange portions of their code, thus forming a pair of new
individuals. In the simplest form of crossover, a crossover
point on the two chromosomes is selected at random, and
the chromosomes exchange all data after that point, while
keeping their own data up to that point. In order to introduce
additional variation in the population, a mutation operator will
randomly change a bit or bits in some chromosome(s). Usu-
ally, the mutation rate is kept low to permit good solutions to
remain stable. According to Sultan H. Aljahadi and Moham-
med E. El-Telbany [7], the two most critical elements of a ge-
netic algorithm are the way solutions are represented, and the
fitness function, both of which are problem-dependent. The
coding for a solution must be designed to represent a pos-
sibly complicated idea or sequence of steps. The fitness func-
tion must not only interpret the encoding of solutions, but also
must establish a ranking of different solutions. The fitness
function is what will drive the entire population of solutions
towards a globally best Figure 1, illustrates the basic steps in
the canonical genetic algorithms.

Genetic algorithms are based on the model of evolution, in
which a population evolves towards overall fitness, even
though individuals perish. Evolution dictates that superior in-
dividuals have a better chance of reproducing than inferior
individuals, and thus are more likely to pass their superior
traits on to the next generation. This “survival of the fittest”
criterion was first converted to an optimization algorithm by
Holland in 1975 [9], and is today a major optimization tech-
nique for complex, nonlinear problems. In a genetic algorithm,
each individual of a population is one possible solution to an
optimization problem, encoded as a binary string called a
chromosome. A group of these individuals will be generated,
and will compete for the right to reproduce or even be carried
over into the next generation of the population.

Figure 1: Genetic algorithm

IV. Parameters of genetic algorithm

The parameters of Genetic Algorithm are as follows

o Population Size.
o Number of Generation.
o Crossover Rate.
o Mutation Rate.
o Selection Method.
o Reproduction Rate.

V. Mapping of genetic algorithm with software reliability
GA is a powerful machine learning technique and optimization
techniques to estimate the parameters of well known reliably
growth models.

•	 Fitness	function:	(for	Reliability	estimation).
Fitness = (∑i=1 to m (xi – x^i)2 Dim)1/2

Where xi is the real value, x^i is the estimated value, Di is
the weight of each example, and m is the size of the dataset.

•	 Regression	Model
The regression model is given by Sultan H. Aljahdali and Mo-
hammed E. El-Telbany [7] as follows.

Time series analysis deals with the problems of identification
of basic characteristic features of time series, as well as with
discovering - from the observation data on which the time
series is built - the internal time series structure to predict
time series data values which help in deciding about the sub-
sequent actions to be taken. One of most used times series
models is the auto regression model.

The AR model can be described by the following equation:

Where is the previous observed number of faults and (i =1,
2,….,n). The value of n is referred to as the “order” of the
model, and (i =1,2,…,n) are the model parameter.

VI. Steps of Genetic Algorithm

•	 Steps	of	Genetic	Algorithm
1. Initialize population gene.
2. Calculate fitness value.
3. Select mating pair based on fitness.
4. Crossover to produce offspring.
5. Mutate offspring gene.
6. Insert offspring in to population.
7. Stop criteria met? If no go to step 2 else step 8.
8. Finish.

VII. Existing techniques
In component based software system, if a system consists of
n components with reliabilities denoted by R1,…, Rn respec-
tively, the reliability of system is an execution path, 1, 3, 2,
3, 2, 3, 4, 3, n, is given by Rs. Thus, the objective here is to
estimate the reliability of a system by averaging over all path
reliabilities. For this propose system consider the architecture
of software as shown in Figure 2. Assume that, the application
consists of n components, and has a single initial state de-
noted by 1, and a single absorbing or exit state denoted by n.

The expected reliability of system is defined by the following
equation:

Where: E[Rs] is the estimated reliability of the system.

 Rim1,i is the reliability of individual component.

Thus to obtain the expected reliability of the application, we
need to obtain E[Rim1,i] which is the expected reliability of
component i for a single execution. From the Taylor series
expression of the function of a random variable [8] we have:

Where: Var[m1,i] is the variance of individual component.

Since the number of visits to the absorbing state n is always
1, E[m1,n] = 1 and Var[m1,n] = 0 and hence E[Rnm1,n] = Rn.
Equation (3) can be written as:

The result is shown in Table 2 according to equation (4) and
(5)

p1,2 = 0.60 p1,3 = 0.20 p1,4 = 0.20
p2,3 = 0.70 p2,5 = 0.30

Volume : 1 | Issue : 11 | November 2012 ISSN - 2250-1991

PARIPEX - INDIAN JOURNAL OF RESEARCH X 19

p3,5 = 1.00
p4,5 = 0.40 p4,6 = 0.60
p5,7 = 0.40 p5,8 = 0.60
p6,3 = 0.30 p6,7 = 0.30 p6,8 = 0.10 p6,9 = 0.30
p7,2 = 0.50 p7,9 = 0.50
p8,4 = 0.25 p8,10 = 0.75
p9,8 = 0.10 p9,10 = 0.90
Table 1: Transaction probability of components

The system reliability is 0.8267 using equation (3).

Figure 2: Architecture of Component Base Software

Com-
ponent

No.

Assume
Reliability

(Ra)

Mean
(m)

Variance
(v)

Estimated
Reliability

(Rs)

1 0.9990 1.0000 0.0000 0.9990

2 0.9800 0.9077 0.6444 0.9819

3 0.9900 0.9107 0.5499 0.9909

4 0.9700 0.4184 0.3928 0.9874

5 0.9500 1.3504 0.7185 0.9337

6 0.9950 0.2510 0.2319 0.9987

7 0.9850 0.6155 0.6261 0.9908

8 0.9500 0.8737 0.4255 0.9564

9 0.9750 0.3831 0.2462 0.9904

10 0.9850 1.0000 0.0000 0.985

Table 2: Estimated reliability using existing technique

VIII. Proposed Methodology
In this section, I propose a Genetic Algorithm based approach
for estimating reliability for component based systems. It is of-
ten impossible to estimate software quality attributes directly.
For example, attributes (say, reliability, etc.) are affected by
many different factors, and there is no straightforward method
to measure them. To estimate reliability of CBS, one needs
to establish a relationship of the factors with reusability to
achieve the desired goal. Following parameter has been iden-
tified, which will influence reusability of CBS:

• Assume Reliability (Ra) of component: We can assume
the reliability of component according to its transaction
probability from one component to other component.

• Mean (m) value of component: Denotes the number of
visits to state j starting from state i before the process
absorbed. Changing in mean value of component may
affect the reliability of component. We can calculate the
mean value using DTMC [8] method.

• Variance (v) value of component: Denotes the number of
visits to state j starting from state i before the process
absorbed. Changing in mean value of component may
affect the reliability of component. We can calculate the
variance value using DTMC [8] method.

We assume that the architecture of the application modeled
using a Desecrate Time Markov Chain (DTMC) and the time
spent by the application in each component per visit is a ran-
dom variable with known mean and variance. We also as-
sume that the reliability of each component per visit is known.
We assume that the application consists of n components,
and has a single initial stage denoted by 1, and a single ab-
sorbing state or exit state denoted by n. We also assume that
the components fail independently of each other as well as
successive executions.

IX. Conclusion
We can estimate the reliability of individual component of the
system and according to this individual component reliability
we can estimate the reliability of the whole system. We can
estimate overall reliability of system considering the contri-
bution of a component’s reliability depending upon its usage
time and the path propagation probability for possible paths of
execution. By optimizing the assumed reliability of individual
component and according to this we can optimize the reliabil-
ity of individual component and whole system.

REFERENCES

[1] M. Sparling: "Lessons Learned through Six Years of Component Based Development", Communications of the ACM, 2003. | [2] Musa, John. Software Reliability
Engineering, New York,NY, McGraw-Hill, 1998. | [3] J.D Musa (1987), Software Reliability measurement, prediction, application McGRAW-HILL International Edition.
ISBN 0-07-100208-1 | [4] Michael R. Lyu (May 2005) Handbook of Software Reliability Engineering: Introduction. IEEE Computer Society Press and McGraw-Hill Book
Company | [5] Alan wood (September 1996) TANDEM Software Reliability Growth Models. Technical report 96.1, part no 130056. | [6] Jung-Hua Lo, Chin-Yu Huang,
Sy-Yen Kuo, and Michael R. Lyu (2003), Sensitivity Analysis of Software Reliability for Component-Based Software Applications. 27th Annual International Computer
Software and Applications Conference, ISBN: 0-7695-2020-0. | [7] Aljahdali and Mohammed E. El-Telbany (JUNE 2008, Genetic Algorithms for Optimizing Ensemble
of Models in Software Reliability Prediction”, ICGST-AIML Journal, pp 5-13, Volume 8. | [8] Swapna S. Gokhale. Kishor S. Trivedi (2002), Reliability Prediction and
Sensitivity Analysis Based on Software Architecture, IEEE, Software reliability, pp 64-75, ISBN: 0-7695-1763-3. | [9] Holland J., Adaption in Natural and Artificial Systems,
University of Michigan Press, Ann Arbor, Michigan, 1975. | [10] S. Rajasekaran, “Neural Networks Fuzzy Logic and Genetic Algorithms Synthesis and Application,” PHI,
ISBN 81-203-2186-3. 2003.

