
Volume : 2 | Issue : 4 | April 2013 ISSN - 2250-1991

234 X PARIPEX - INDIAN JOURNAL OF RESEARCH

ABSTRACT

Even though software problems are numerous (e.g. cancellation, cost overruns, schedule overruns, litigation, low levels

of user satisfaction, high maintenance cost), still software metrics are not commonly used in most software companies.

This paper will give a comprehensive survey of different software quality metrics (with empirical proofs) so that software

organizations can integrate software metrics to estimate project attributes.

Research Paper

A Comparative Survey of Software Quality

Metrics

* Kirti Mathur ** Amber Jain

Information Technology

* International Institute of Professional Studies, D. A. University, Indore

** International Institute of Professional Studies, D. A. University, Indore

Keywords : metrics, software, quality, estimation

II. Introduction
A software metric is a quantitative measure of properties of a
software or its specifications with the goal to obtain objective,
reproducible and quantifiable measurements, which are use-
ful in cost estimation, schedule and budget planning, optimal
personnel task assignments, software performance optimi-
zation, software debugging and quality assurance testing of
software projects [17].

The need for this survey arose from the fact that even
though many software projects fail due to cost and sched-
ule overruns, cancellations etc, still software metrics are not
mainstay in most software companies. Quoting [1]: “... most
companies still do not use systematic software measure-
ment to assess software quality. One reason is that, in many
companies, the software processes are poorly defined and
controlled, and are not sufficiently mature to make use of
measurements. Another reason is that there are no stand-
ards for metrics and hence there is limited tool support for
data collection and analysis. Most companies will not be pre-
pared to introduce measurement until these standards and
tools are available.”

In this paper, we’ll analyze industry standard software metrics
so that organizations will be able to draw useful conclusions
about the quality of software.

III. LITERATURE REVIEW
ISO standard for the evaluation of software quality using soft-
ware metrics [2] classifies software quality in a structured set
of characteristics as follows:

Figure-1: ISO/IEC 9126-1:2001 classification of Software
Quality

[2] further classifies software attributes into:
· Internal attributes: which do not rely on software execu-

tion (static measure).
· External attributes are those metrics which are applicable

to running software.

Software metrics can be divided in two parts:

Product
Metrics

· Measures the quantifiable attributes of a
software
· Examples include size, complexity, code
reuse

Process
Metrics

· Measures of process of creating a software
· Examples include time spent, defects found
and stability of requirements

Resource
Metrics

· Measures of entities required by a process
activity

Table-1: Software metrics classification

Fenton and Pfleeger suggested following classification
of components of software measurement [1]:

Volume : 2 | Issue : 4 | April 2013 ISSN - 2250-1991

PARIPEX - INDIAN JOURNAL OF RESEARCH X 235

Table-2: Components of Software Metrics

There are two kinds of metrics: those that can be evaluated in
absolute terms and relative terms [4]. Sharma et al [3] classi-
fied software metrics as:

Figure-2: Classification of Software Metrics

Adam Kolawa et al [5] classified these metrics into:

Figure-3: Software metrics classification (Adam Kolawa et al)

Some metrics suites were proposed by M. Subramanyam et
al. [6] and they concluded that for the developers, designs
metrics are very important to enhance the quality of software.

H. Lieu. et al. [7] have inferenced from their study that qual-
ity of software also plays an important role in terms of safety
aspects and financial aspects. They bridged the gap between
quality measurement and design of these metrics during de-
velopment/re-development process of the software.

Standalone metrics provide a convenient, informative, at-a-
glance snapshot. For example, LOC - a trivial measure that
has little value in terms of assessing developer productivity
- is an effective tool for understanding other metrics. Almost
any code or testing metric that suffers a sharp spike or sud-
den drop requires a look at total LOC to be understandable.

Another example is Requirements metrics, which measure
the number of requirements that have been implemented and
tested, is maximized when measured over time.

Yet another example include test metrics (such as code cov-
erage) that have now been widely discredited as a standalone
measure. It is now well established that 100% code coverage
is rarely a valid goal, so the code coverage as absolute values
is useful only to meet a certain base coverage target.

Another valuable ratio compares changes in LOC to changes
in the number of tests. In theory, the number of tests should
change in direct proportion to the LOC.

IV. Comparison of software metrics in use at at&t, nasa
and open source projects
NASA has built a repository of various metrics for both pro-
cedural and object oriented programming languages [8]. An-
other repository of metrics created by the NASA also includes
metrics about errors and requirements [9]. Researchers of the
NASA disseminated many of their results based on their stud-
ies on software metrics.

In another study, open source projects were compared
against each other and one originally closed source system
against its open source successor [11]. The Maintainability
Index [10] metric was measured in time (for each successive
version) to detect whether the system’s source code quality is
improving or deteriorating.

Another approach, usually referred to as Goal-Question-Met-
ric (GQM) paradigm, measures what is needed (rather than
what is convenient to measure). This approach provides a
3-steps framework:

· List major goal of development project.
· Derive from each goal the questions that must be an-

swered to determine if the goals are being met.
· Decide what must be measured in order to be able to

answer questions adequately.

Figure-4: GQM framework

Volume : 2 | Issue : 4 | April 2013 ISSN - 2250-1991

236 X PARIPEX - INDIAN JOURNAL OF RESEARCH

AT&T used GQM [20] to determine which metrics were ap-
propriate for their inspection process:

Table-3: AT&T’s GQM analysis

IV. SURVEY OF SOFTWARE QUALITY METRICS
3.1 Source Lines of Code (SloC):
· Counting lines is used for estimating the amount of main-

tenance required
· Software Engineering Institute has published a set of rec-

ommendations [13] to standardize the counting.

3.2 Cyclomatic Complexity (CC):
Cyclomatic complexity, also known as CC, (proposed by Mc-
Cabe in [12]) is used to evaluate the complexity of an algo-
rithm in a method. This metric measures the number of inde-
pendent paths through a software module.

A method with a low CC is generally better, although it may
mean that decisions are deferred through message passing,
not that the method is not complex.

Mc .Cabe describe as: V (G) =e-n+2
where, V(G)=CC of flow graph
G of method in which we interested
e=number of edges in G
n= number of nodes in G

[12] proposes an upper limit of 10 for CC because higher val-
ues would indicate less manageable and testable modules.

Although CC is widely used, many criticize its usage on it ex-
ists. Many experts claim that CC is based on poor theoretical
foundations and an inadequate model of software develop-
ment.

3.3 Extended Cyclomatic complexity (ECC):
CC measures the program complexity but fails to differenti-
ate in the complexity of cases involving single condition in
conditional statement. Myers suggested extended cyclomatic
complexity that may be defined as: ECC=eV(G)=Pe+1

Where, Pe=number of predicate nodes in flow graph

G weighted by number of compound statements

3.4 Comment percentage:
Comment percentage or Comment Density includes both on-
line (with code) and stand-alone comments and is used to
evaluate the attributes of Understandability, Re-usability, and
Maintainability.

Comment % = (Total number of comments) / (Total lines of
code – blank lines) Empirical evidence has confirmed that a
comment percentage of about 30% is most effective.

3.5 Duplicated code:
When code is duplicated it becomes more error prone and
harder to make changes. To measure duplicated code:

· Line based text matching.
· Matching layout, expression and control flow metrics.

3.6 Halstead Metrics:
The main aim of these metrics is to find out the overall soft-
ware production effort [15].

Name Nota-
tion Description/Formula

Length N
· N=N1+N2
· N1: Number of operators
· N2: Number of operands

Vocabu-
lary n

· n = n1 + n2
· n1: number of unique operators
· n2: number of unique operands

Volume V

· Defined as a count of the number of
mental comparisons required to generate
a program.
· V = N * log2n

Volume : 2 | Issue : 4 | April 2013 ISSN - 2250-1991

PARIPEX - INDIAN JOURNAL OF RESEARCH X 237

Progra-
mming
Effort

E

· Defined as measurement of the mental
activity required to reduce a preconceived
algorithm to a program P
· E = V/L
where L = Program Level
· E = (n1 * N2 * N log2n)/(2 * n2)

Progra-
mming
Time

T

· T = E/S
where S is the Stroud number 4,
defined as the number of elementary
discriminations performed by the human
brain per second
S value for software scientists is set to 18
· T = (n1 * N2 * N log2n) / (2 * n2 * S)

Table-4: Halstead Metrics
3.7 COCOMO model:
Barry Boehm’s COCOMO model asserts that effort required
to develop a software system (measured by E in person
months) is related to size (measured by S in thousands of
delivered source statements) by the equation:

E = a Sb (where a and b are parameters determined by type
of software system).

3.8 Object-Oriented metrics:
Traditional metrics such as cyclomatic complexity cannot
measure OO concepts such as classes, inheritance and mes-
sage passing.

New metrics have been developed to measure OO systems.
One commonly used set of OO metrics is Chidamber and Ke-
merer’s suite of class level metrics [14]:

3.8.1 Weighted Methods Per Class (WMC):
WMC is the sum of the static complexity of the methods.

3.8.2 Depth of Inheritance Tree (DIT):
When a class is deeply nested it inherits more from it’s ances-
tors. This can increase the complexity of the class.

3.8.3 Number of Children (NOC):
Classes that have many children are hard to change because
of the tight couplings with its children.

3.8.4 Coupling Between Objects (CBO):
A high number of couplings with other classes is disadvanta-
geous because when the interface of a class it is coupled to
changes it needs to be modified as well.

3.8.5 Response For a Class (RFC):
RFC is a measure of the interaction of a class with other
classes.

3.8.6 Lack of Cohesion in Methods (LCOM):
This metric calculates the usage of a class’s attributes in its
methods. A class lacks cohesiveness when methods do not
make use of its attributes.

REFERENCES

[1] Sommerville. (2008). Software Engineering, 8/E. Pearson Education India. | [2] ISO/IEC 9126-1:2001. Software engineering -- Product quality. ISO/IEC. | [3] Sharma,
A., & Dubey, S. K. Comparison of Software Quality Metrics for Object-Oriented System. International Journal of Computer Science, 12. | [4] Integration Watch: Using
metrics effectively - SD Times: Software Development News. (n.d.). Retrieved April 8, 2013, from http://www.sdtimes.com/link/34157 | [5] Huizinga, D., & Kolawa, A.
(2007). Automated Defect Prevention: Best Practices in Software Management (1st ed.). Wiley-IEEE Computer Society Pr. | [6] M.Subramanyam and R.Krishnan:
“Emphirical Analysis of CK metrics for OOD complexity: Implication for software defect”, IEEE transaction on software engineering, 2003. | [7] H.Lilu, K.Zhou and
S.Yang: “Quality metrics of OOD for Software development and Re-development”, First Asia-Pacific Conference on Quality Software, August 2002. | [8] NASA Software
Assurance Technology Center, Software Metrics Research | and Development. http://satc.gsfc.nasa.gov/metrics/. Last visited august 2006 | [9] NASA Independent
Verification and Validation Facility, Metrics Data | [10] D. Coleman, D. Ash, B. Lowther, P. Oman, Using Metrics to Evaluate Software System Maintainability, Computer,
vol. 27, no. 8, pp. 44-49, Aug., 1994 | [11] Samoladas, I., Stamelos, I., Angelis, L., and Oikonomou, Open source software development should strive for even greater
code maintainability, Communications of the ACM 47, 10 (Oct. 2004), 83-87. | [12] T.J. McCabe, A Complexity Measure, Proceedings of the 2nd international confer-
ence on Software engineering, 1976 | [13] R.E. Park, Software Size Measurement: A Framework for Counting Source Statements, Software Engineering Institute
(CMU/SEI-92-TR-020), 1992 | [14] C. Archer. Measuring Object-Oriented Software Product, Software Engineering Institute (SEI-CM-28), 1995 | [15] Kan, S. H., &
Kan. (2003). Metrics And Models In Software Quality Engineering, 2/E. Pearson Education India. | [16] Pressman, R. S. (2010). Software engineering: a practitioner’s
approach. McGraw-Hill Higher Education. | [17] Software metric. (2013, April 3). In Wikipedia, the free encyclopedia. Retrieved from http://en.wikipedia.org/w/index.
php?title=Software_metric&oldid=543825909 | [18] Fenton, N. E., & Pfleeger, S. L. (1998). Software Metrics: A Rigorous and Practical Approach (2nd ed.). Boston,
MA, USA: PWS Publishing Co. | [19] Boehm, B. W. (1981). Software Engineering Economics. Pearson Education. | [20] Barnard, J., & Price, A. (1994). Managing code
inspection information. Software, IEEE, 11(2), 59-69.

