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ABSTRACT

This article presents ideas of comparisons of hypergraphs on the basis of number of hyperedges and comparability of hyperedges 

by set inclusion.  Also discussed are ways to refine / coarsen certain classes of Sperner hypergraphs.
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1. Introduction.
Established terminologies, notations and theorems in set the-
ory and propositional logic [1] are assumed.  Let V be a finite 
nonempty set.  Its cardinality (or, size) is denoted by │V│.  2V 
denotes the power set of V, or the set of all subsets (includ-
ing the empty set φ) of V.  2V* denotes the set of all nonempty 
subsets of V; that is, 2V* = 2V – {φ}.

A hypergraph [2] on V is a couple H = (V, E) where V is a 
nonempty finite set and E is a family of nonempty subsets of 
V such that ∪ X  E X = V.  The set V is called the vertex set of 
H and each member of E is called a hyperedge of H.  If no 
hyperedge in H equals all of V then we call H non-trivial.  If 
the members of E are all distinct (that is, no two members 
coincide as subsets of V; or, E ⊆ 2V*) then H is called simple.  
If no member of E is a subset (proper or otherwise) of another, 
then H is called a Sperner hypergraph.  In some instances ([2] 
and [3]) Sperner hypergraphs are taken to be simple and vice 
versa but there is a distinction [4] between the two: Sperner 
hypergraphs are necessarily simple but not conversely [6].

All the hypergraphs in this article are assumed non-trivial and 
simple unless there is some unambiguous indication to the con-
trary. Motivation for the ideas presented in this article comes 
from those of fineness and coarseness of topologies [5].

2. Comparisons of hypergraphs
Let H

1
 = (V, E

1
) and H

2
 = (V, E

2
) be two hypergraphs on the same 

vertex set V.  We say H
2
 is denser than H

1
 (written H

2
 ⊇ H

1
) ifE

2
  ⊇ 

E
1
.  In this case we also say H

1
 is rarer than H

2
 (written H

1
 ⊆ H

2
).  

We say H
2
 is a refinement of H

1
 (or, E

2
 is a refinement of E

1
) 

if: given A
1
 ∈ E

1
 and x ∈ A

1
, there is A

2
 ∈ E

2
 such that x  A

2 
∈ 

A
1
.  In this case we also say H

1
 is a coarsening of H

2
; or that 

H
2 
is finer than H

1
, which we write H

2 
> H

1
; or that H

1 
is coarser 

than H
2
, which we write H

1 
< H

2
.  We say two hypergraphs (V, 

E
1
) and (W, E

2
) are equal if and only if: V = W and E

1
 = E

2
.  

2.1: Proposition.  (i) Every hypergraph refines itself
(ii) H

d
 = (V, 2V*), the discrete hypergraph on V, refines every 

hypergraph on V.  
(iii) Every hypergraph denser (respectively, rarer) than a giv-

en hypergraph H is a refinement (resp., coarsening) of H.
(iv) Two hypergraphs on the same set V are equal if and only 

if each is denser than the other.
The proof of 2.1 takes only elementary set theory.

2.2: Example.  Two hypergraphs on the same set V need not 
be equal even if each refines the other.  Consider H

1
 = (V, E

1
) 

and H
2
 = (V, E

2
) where V = {1, 2, 3, 4, 5}, E

1
 consists of all the 

singleton subsets of V and E
2
 consists of all the nonempty 

proper subsets of V.  It is a straightforward check that H
1
 and 

H
2
 refine each other.  Yet H

1
 ≠ H

2
, because E

1
 ≠ E

2
.  

2.3: Proposition.  Let H
1
 = (V, E

1
), H

2
 = (V, E

2
) and H

3
 = (V, 

E
3
).  Then:

(i) If H
1
 ∈ H

2 
and H

2
 ∈ H

3
, then H

1
 ∈ H

3

(ii) If H
3 
> H

2 
and H

2 
> H

1
, then H

3
 > H

1
.  

Proof.  (i) is straightforward.  
(ii) Given A

1
 ∈ E

1
 and x ∈ A

1
, there exist A

2
 ∈ E

2
 and A

3
 ∈ E

3
 

such that x ∈ A
2 

⊆
 
A

1 
and x ∈ A

3 
⊆ A

2
.  It follows that H

3
 

> H
1

2.4: Proposition.  Let H
1
 = (V, E

1
) be Sperner.  Let A, B ∈ E

1
 

such that A ≠ B and A  B ≠ V.  Let E
2
 = E

1
 ∪ {A  B} – {A, B}, and 

take H
2
 = (V, E

2
). Then H

2 
is coarser than H

1
. 

Proof. The fact that A ∪ B ∉ E
1
 shows H

2
 is simple.  Next, 

suppose Y ∈ E
2
 and x ∈ Y are given.  If Y = A ∪ B, then x ∈ A 

⊂ A ∪ B or x ∈ B ⊂ A ∪ B, with A, B  E
1
.  If Y ≠ A ∪ B, then Y 

∈ E
1
 ∩ E

2
, so that x ∈ Y ⊆ Y.  

2.5: Proposition.  Given a Sperner hypergraph H
1
 = (V, E

1
).  

Suppose there is A ∈ E such that A = A
1
 ∪ A

2
, where A

1
 and A

2
 

are nonempty and disjoint.  Let E
2
 = E

1
 ∪ {A

1
, A

2
} – {A}.  Then 

H
2
 = (V, E

2
) is finer than H

1
.   

Proof.  Clearly A
1
 ∉ E

1
 and A

2
 ∉ E

1
, and so H

2
 is simple.  

Given X ∈ E
1
 and x ∈ X.  If X = A, then x ∈ A

1
 ⊂ A or x ∈ A

2
 ⊂  

A; else X ∈ E
1
 ∩ E

2
 so that x ∈ X ⊆ X.

3. Summing up
From certain Sperner hypergraphs, coarser hypergraphs can 
be constructed (2.4); and from certain other Sperner hyper-
graphs, finer hypergraphs can be constructed (2.5).  However, 
hypergraphs so constructed may not necessarily be Sperner. 
The authors are studying hypergraph properties that could be 
preserved as hypergraphs get refined and / or rarified.
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