* R. Dharmarajan ** Dr. S. Palaniammal

* Department of Mathematics, SASTRA University, Thanjavur, Tamilnadu State, India.

** Department of Science \& Humanities, Sri Krishna College of Technology, Coimbatore, Tamilnadu State, India.

ABSTRACT
This article presents ideas of comparisons of hypergraphs on the basis of number of hyperedges and comparability of hyperedges by set inclusion. Also discussed are ways to refine / coarsen certain classes of Sperner hypergraphs.

Keywords : Hypergraph, hyperedge, Sperner, simple hypergraph.

1. Introduction.

Established terminologies, notations and theorems in set theory and propositional logic [1] are assumed. Let V be a finite nonempty set. Its cardinality (or, size) is denoted by $|\mathrm{V}| .2^{\mathrm{V}}$ denotes the power set of V , or the set of all subsets (including the empty set φ) of V . $2^{\mathrm{V}^{*}}$ denotes the set of all nonempty subsets of V ; that is, $2^{V^{*}}=2^{\mathrm{V}}-\{\varphi\}$.

A hypergraph [2] on V is a couple $\mathrm{H}=(\mathrm{V}, \mathrm{E})$ where V is a nonempty finite set and E is a family of nonempty subsets of V such that $\cup_{X E E} X=V$. The set V is called the vertex set of H and each member of E is called a hyperedge of H. If no hyperedge in H equals all of V then we call H non-trivial. If the members of E are all distinct (that is, no two members coincide as subsets of V ; or, $\mathrm{E} \subseteq 2^{\mathrm{v}^{*}}$) then H is called simple. If no member of E is a subset (proper or otherwise) of another, then H is called a Sperner hypergraph. In some instances ([2] and [3]) Sperner hypergraphs are taken to be simple and vice versa but there is a distinction [4] between the two: Sperner hypergraphs are necessarily simple but not conversely [6].

All the hypergraphs in this article are assumed non-trivial and simple unless there is some unambiguous indication to the contrary. Motivation for the ideas presented in this article comes from those of fineness and coarseness of topologies [5].

2. Comparisons of hypergraphs

Let $H_{1}=\left(V, E_{1}\right)$ and $H_{2}=\left(V, E_{2}\right)$ be two hypergraphs on the same vertex set V. We say H_{2} is denser than $\mathrm{H}_{1}\left(\right.$ written $\left.\mathrm{H}_{2} \supseteq \mathrm{H}_{1}\right)$ ifE ${ }_{2} \supseteq$ E_{1}. In this case we also say H_{1} is rarer than $\mathrm{H}_{2}\left(\right.$ written $\left.\mathrm{H}_{1} \subseteq \mathrm{H}_{2}\right)$.

We say H_{2} is a refinement of H_{1} (or, E_{2} is a refinement of E_{1}) if: given $A_{1} \in E_{1}$ and $x \in A_{1}$, there is $A_{2} \in E_{2}$ such that $x A_{2} \in$ A_{1}. In this case we also say H_{1} is a coarsening of H_{2}; or that H_{2} is finer than H_{1}, which we write $\mathrm{H}_{2}>\mathrm{H}_{1}$; or that H_{1} is coarser than H_{2}, which we write $H_{1}<H_{2}$. We say two hypergraphs (V, E_{1}) and (W, E_{2}) are equal if and only if: $V=W$ and $E_{1}=E_{2}$.
2.1: Proposition. (i) Every hypergraph refines itself
(ii) $H_{d}=\left(V, 2^{V^{*}}\right)$, the discrete hypergraph on V, refines every hypergraph on V .
(iii) Every hypergraph denser (respectively, rarer) than a given hypergraph H is a refinement (resp., coarsening) of H .
(iv) Two hypergraphs on the same set V are equal if and only if each is denser than the other.
The proof of 2.1 takes only elementary set theory.
2.2: Example. Two hypergraphs on the same set V need not be equal even if each refines the other. Consider $H_{1}=\left(V, E_{1}\right)$ and $H_{2}=\left(V, E_{2}\right)$ where $V=\{1,2,3,4,5\}, E_{1}$ consists of all the singleton subsets of V and E_{2} consists of all the nonempty proper subsets of V . It is a straightforward check that H_{1} and H_{2} refine each other. Yet $H_{1} \neq H_{2}$, because $E_{1} \neq E_{2}$.
2.3: Proposition. Let $H_{1}=\left(V, E_{1}\right), H_{2}=\left(V, E_{2}\right)$ and $H_{3}=(V$, $\left.E_{3}\right)$. Then:
(i) If $\mathrm{H}_{1} \in \mathrm{H}_{2}$ and $\mathrm{H}_{2} \in \mathrm{H}_{3}$, then $\mathrm{H}_{1} \in \mathrm{H}_{3}$
(ii) If $\mathrm{H}_{3}>\mathrm{H}_{2}$ and $\mathrm{H}_{2}>\mathrm{H}_{1}^{3}$, then $\mathrm{H}_{3}>\mathrm{H}_{1}^{3}$.

Proof. (i) is straightforward.
(ii) Given $A_{1} \in E_{1}$ and $x \in A_{1}$, there exist $A_{2} \in E_{2}$ and $A_{3} \in E_{3}$ such that $x \in A_{2} \subseteq A_{1}$ and $x \in A_{3} \subseteq A_{2}$. It follows that H_{3}^{3} $>\mathrm{H}_{1}$
2.4: Proposition. Let $H_{1}=\left(V, E_{1}\right)$ be Sperner. Let $A, B \in E_{1}$ such that $A \neq B$ and $A B \neq V$. Let $E_{2}=E_{1} \cup\{A B\}-\{A, B\}$, and take $H_{2}=\left(V, E_{2}\right)$. Then H_{2} is coarser than H_{1}.

Proof. The fact that $A \cup B \notin E_{1}$ shows H_{2} is simple. Next, suppose $Y \in E_{2}$ and $x \in Y$ are given. If $Y=A \cup B$, then $x \in A$ $\subset A \cup B$ or $x \in B \subset A \cup B$, with $A, B E_{1}$. If $Y \neq A \cup B$, then Y $\in \mathrm{E}_{1} \cap \mathrm{E}_{2}$, so that $\mathrm{x} \in \mathrm{Y} \subseteq \mathrm{Y}$.
2.5: Proposition. Given a Sperner hypergraph $H_{1}=\left(V, E_{1}\right)$. Suppose there is $A \in E$ such that $A=A_{1} \cup A_{2}$, where A_{1} and A_{2} are nonempty and disjoint. Let $E_{2}=E_{1} \cup\left\{A_{1}, A_{2}\right\}-\{A\}$. Then $H_{2}=\left(V, E_{2}\right)$ is finer than H_{1}.

Proof. Clearly $A_{1} \notin E_{1}$ and $A_{2} \notin E_{1}$, and so H_{2} is simple. Given $X \in E_{1}$ and $x \in X$. If $X=A$, then $x \in A_{1} \subset A$ or $x \in A_{2} \subset$ A; else $X \in E_{1} \cap E_{2}$ so that $x \in X \subseteq X$.

3. Summing up

From certain Sperner hypergraphs, coarser hypergraphs can be constructed (2.4); and from certain other Sperner hypergraphs, finer hypergraphs can be constructed (2.5). However, hypergraphs so constructed may not necessarily be Sperner. The authors are studying hypergraph properties that could be preserved as hypergraphs get refined and / or rarified.

Acknowledgments

The authors express their thanks to (1) Professor R. Se-
thuraman, Vice Chancellor, SASTRA University and (2) D.
Ramachandran, Director, Abel-Jacobi Research Foundation, Palghat (Kerala State, India) for their unstinted encouragement and support.

