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ABSTRACT

The design of hash functions are investigated under two subtopics which are compression functions and the construction 

methods. Compression functions are the core of the hashing algorithms and most of the effort is on the compression function 

when designing an algorithm. Moreover, for Merkle-Damgard hash functions, the security of the algorithm depends on the 

security of the compression function. Construction method is also an important design parameter which defines the strength 
of the algorithm. Construction method and compression function should be consistent
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1.Construction Methods
construction methods of hash functions are discussed in de-
tails. Iterative hash functions still pace a big portion of all hash 
constructions. Therefore, iterative designs will be investigated 
deeply.These constructions include Merkle-Damgard(MD)1, 
HAIFA and some other alternative designs derived from 
Merkle-Damgard. Besides, sponge constructions is included. 
Sponge construction is a new and secure construction meth-
od which is becoming more popular. 

1.1 Merkle-Damgård Construction
Merkle-Damgard construction is the most widely used hash 
construction method, which was designed by R.Merkle [50] 
and I.Damgard [33] independently in 1989. Most of the hash 
functions and all the standardized hash functions are build 
upon MD construction. MD construction is basically pro-
cessed in three steps. First step is the padding step. The 
aim of the padding is to make the message length a multiple 
of message block length, m. The most widely used padding 
procedure is as follows: a ’1’ bit followed by a number of ’0’ 
bits and the bitwise notation of the message length are ap-
pended to the message. The number of ’0’ bits appended to 
the message are chosen so that the length of the message 
becomes a multiple of block length m. In general the maxi-
mum length of the message that can be processed by the 
hash function is 264 − 1. Therefore 64 bit space is provided 
for the length padding. Considering the appended ’1’ bit, at 
least 65 bits are appended to all messages regardless of 
the message length. If l is the length of the message, d, the 
number of ’0’ bits appended is the smallest positive root of 
the equation

l + 65 + d ≡ 0 (mod m). Second step is dividing the padded 
message into m bit blocks m

0
m

1
m

2
 . . .mt−1. After this step, the 

chaining values are iteratively found by using a fixed, publicly 
known initialization vector, IV, and the message blocks: h0 = 
IV hi = f (hi−1,mi−1) i = 1, 2 . .  , t

where f is the compression function of the hashing algo-
rithm. 

Generally ht is taken to be the hash value of the message. 
However an optional transformation

g(x) can be applied to ht to get the hash value as H(M) = g(ht).

Figure 1.1: MD Structure

The iterative structure of MD construction enables arbitrary 
length messages to be processed easily by the hash func-
tions. Also padding the message length and using a non-zero 
IV, which is called is called the MD − strengthening, increases 
the defeats or increases the complexity of various attacks. 
The most important property of MD structure is that the col-
lision resistance property of the compression function is pre-
served [50, 33]. The MD structure has a security proof that 
states if the compression function used in the hash algorithm 
is collision resistant then the hash function itself is collision re-
sistant [51]. Besides collision resistancy, it was believed that 
MD construction also preserves the preimage resistancy and 
second preimage resistancy of the compression function [52]. 
However there are several attacks in recent years against the 
second preimage resistency of the MD construction such as 
[53, 54, 55].

1.2 HAIFA Construction
MD structure is a provable collision resistant hash construc-
tion method. However, as computing power increases and 
new cryptanalytic tools are proposed, MD hash functions 
become weaker and more vulnerable to attacks. Biham and 
Dunkelman [52], fixing the flaws in MD structure, announced 
a new construction method HAIFA(HAsh Iterative FrAme-
work). HAIFA is an iterative structure which is based on Mer-
kle-Damgard and uses additional tools to increase the secu-
rity. The compression function f takes only message blocks 
mi and chaining values hi as inputs in MD hash functions. In 
HAIFA, compression function inputs are number of bits (or 
message blocks) hashed so far, b, and salt, s, in addition to 
message block and chaining value. So the chaining values 
can be expressed as hi = f (hi−1,mi−1, b, s). The number of 
bits, or message blocks, hashed so far is included as an input 
to prevent the fixed point attacks. In MD structure attacker 
can freely inject fixed points to find a second preimage as she 
needs. However, even if b is not mixed well in f , since the 
inputs to the compression functions are different at each  it-
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eration, attacker can use a fixed point very limited times. The 
other input, salt, is a precaution against attacks which has 
a precomputation phase. Some attacks have two phases 
as on-line and off-line phases. In the off-line phase attacker 
produces a number of structures which can be messages 
or chaining values using some weaknesses in the hash al-
gorithm. After learning the pair (M, H(M)) she mounts the 
on line phase of the attack to produce a collision or second 
preimage. In HAIFA, attacker should know the salt to pro-
duce the structures but the salt is a random number which 
is sent with the pair (M, H(M)) as (M, S alt, H(M, S alt)) to 
the receiver. For security reasons the salt should be at least 
half length of the chaining value and should be random [52]. 
Moreover, in the HAIFA construction, there is a standardiza-
tion of initial values for variable hash sizes. If a fixed IV is 
used for all hash sizes and if for some hash sizes hash val-
ues are truncated, then some bits of the hash values of dis-
tinct sizes will be equal. For example, if one needs a 224-bit 
hash value using a 256-bit hash function, he will produce the 
256-bit hash value and truncate the final (or some other) 32-
bits. Therefore, the 224 bits of the 256-bit and 224-bit hash 
values of a message will be common. HAIFA, uses different 
IVs for different hash values, so the truncation will not cause 
any problems. Another addition is padding the hash size. 
Usual padding adds a ’1’ bit, some ’0’ bits to make the pad-
ded message a multiple of message block length m bits and 
the bitwise notation of the length of the original message. 
New construction method concatenates the bitwise notation 
of hash size after length padding. This ensures that no two 
messages exist which have the same hash value without 
truncation for different hash sizes.

1.3 Sponge Construction
Sponge construction [56] is a new construction method for 
hash functions and stream ciphers. This construction can be 
built upon a function f which can be expressed as a random 
permutation or random function. If f is expressed as a random 
permutation, construction is called a P − sponge, otherwise, 
if it is expressed as a random function, construction is called 
a T − sponge. The main difference between the compression 
functions of MD structures and the f function in sponge con-
struction is, unlike the compressing functions in MD or Haifa, 
f is a function which maps l bit input to l bit output. The con-
struction is consisting of 2 phases: absorbing and squeez-
ing. In the first phase, data is input to the sponge iteratively 
block by block and in the second phase output is given in the 
same manner. These two phases have similar procedures. 
In the absorbing phase, iteratively, message block is XOR-
ed or overwritten to the state and f is applied to this state. 
Then, next message block is processed and so on. After all 
the message blocks are input, second phase is applied. In 
the squeezing phase, some part of the state is output and f 
is applied to the state. Then, again some part of the state is 
output and f is applied until the desired hash size is achieved. 

1.4 Some Other Hash Constructions
1.4.1 Wide Pipe and Double Pipe Construction
In [57] and [58], Lucks introduced a new concept: wide pipe 
hash functions. These hash functions are constructed so that 
the intermediate chaining values are w bits for an n-bit hash 
size with w > n. There is a final transformation at the end 
which reduces the w-bit final chaining value to n bits. The aim 
of the wide pipe construction is to increase the complexities 
of the attacks depending on chaining values. For example, for 
an n−bit hash H1 with n-bit chaining values, an attack which 
finds collisions for the compression function with complexity 
2 n/4, means a break for H1. However for an n-bit wide pipe 
hash H2 with w-bit chaining values where w = 2n, cost of this 
attack is same with exhaustive search cost and not a serious 
case as H1. Another approach, by Lucks, to widen the internal 
state is the double pipe hash functions. In this approach two 
parallel iterations are processed. These two iterations can be 
initialized with different IVs, can use different compression 
functions or can iterate the message blocks in different per-
mutations. At the final step the outputs of the two iterations 
are mixed to get the hash value.

1.4.2 Prefix-Free Merkle-Damgård Construction
One of the problems of MD structure is about the random-
ness: although the underlying compression function is in dif-
ferentiable from a random oracle, the hash function itself is 
not guaranteed to be in differentiable from a random oracle 
[59]. To solve this problem prefix-free encoding is suggested 
for iterated hash functions. Prefix-free encoding (or prefix en-
coding) is v applied to the message before padding process. 
The two of the suggested encoding functions are

• g
1
(M) = LM||m

0
||m

1
|| · · · ||m t−1 where LM is the message 

length.
• g

2
(M) = 0||m

0
||0||m

1
||0|| · · · ||0||mt−2||1||mt−1 where 0 and 1 

are single bits and mi is the (i + 1)th m − 1 bit block of the 
message M.

After encoding, the message is hashed as in MD structure 
and hash function becomes indifferentiable from a random 
oracle.

1.4.3 Enveloped Merkle-Damgård Construction
EMD is proposed by Bellare and Ristenpart in [60] which is 
a construction that preserves collision resistancy, preimage 
resistancy and pseudo-randomness of the compression func-
tion. The message blocks are iterated as MD up to the final 
message block. The final message block mt−1 and ht−1 are 
concatenated and taken as input to another iteration with a 
distinct IV. This operation is called enveloping.

Figure : EMD Construction

1.4.4 RMX Construction
RMX is presented in [61] and [62] by Halevi and Krawczyk. 
The idea of RMX is randomization of the message before 
padding. In this method a random string, r, of length between 
smallest number of padding bits and message block length 
m is produced. From this random string r, three other param-
eters, r

0
, r

1
 and r

2
, are produced: respectively by appending 

zero bits to r, repeating r as many times as necessary and 
taking some part of r. r

0
 is prepended to the message, r1 is 

XORed with all the message blocks except padding and r
2
 

is XORed with the padding blocks. After obtaining the hash 
value, r is stored, or send to a receiver, with the hash value.

h1 = f (IV, r
0
)      ...

hi = f (hi−1, r1 ⊕ mi−2) f or i = 2, 3, ..., t

ht+1 = f(ht, r2 ⊕ mt−1)

H(M) = h
t+1

1.4.5  3C and 3C-X Constructions
3C and 3C − X are proposed by Gauravaram [63] which are 
similar to double pipe hash construction. In 3C construction, 
while message is iterated from the main line, there is an ad-
ditional line which takes inputs from the main iteration line. Fi-
nally the outputs of two lines are mixed to get the hash value. 
The algorithm can be defined as follows

h
1
 = f (h

0
,m

0
)

z0 = h
1

hi = f (hi−1,mi−1) i = 1, 2, . . . , t

zi−1 = f (zi−2, PAD(hi)) i = 2, . . . , t
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ht+1 = f (ht, PAD(zt−1)

H(M) = ht+1

where PAD(x) is padding x with 0 bits until it becomes m-bits.

Figure: 3C Construction

The 3C−X construction is similar to 3C. The only difference 
is that the compression functions in the second iteration line, 
except the final compression function, are replaced with XOR 
operations. This way construction becomes lighter.

1.4.6 Dynamic Hash Function Construction
Dynamic hashing, by Speirs [64], is a collection of iteration 
lines where each line feeds the next line. This construction 
has a security parameter s which can be considered as salt. 
The message M is padded to be a multiple of m − n bits. A ’1’ 
bit followed by a number of ’0’ bits are appended to the mes-
sage. Then 64 bits message length and 32 bits representation 
of s is concatenated. The number of lines, l, in the construc-

tion depends on hash size d. l is chosen such that n(l − 1) < d 
≤ nl. Each line has an initial value, hi 0 which is derived from 
the line number and s as hi 0 = f (IV1, IV1||s||00..0||i − 1). The 
lines are interacting with each other. The output hjk of kth 
iteration of line j is concatenated to mk and input to the (k + 1)
st iteration of line ( j + 1) mod l, where l is the number of lines. 
At the end of iterations an “envelope” operation is done with 
another initial value hit +1 = f (IV2, hit ||00 · · · 0) and these 
chaining values are concatenated to get the hash value using 
the iterations

IVs, j = f (IV1, IV1||s||00 · · · 0||j − 1) f or j = 0, 1, . . . , l − 1,

h1, j = f (IVs, j,m0||IVs,( j−1) mod l) f or j = 0, 1, . . . , l − 1,...

h
i, j 

= f (hi−1, j,mi−1||hi−1,( j−1) mod l) f or i = 2, . . . , t − 1, j = 
0, 1, . . . , l − 1,    ...

h
t, j 

= f (IV
2
, ht−1, j||j) f or j = 0, 1, . . . , l − 1,

H(M) = g(h
t,0

||h
t,1

|| · · · ||ht,l−1, )

where g(x) is a mapping from n · l bits to hash size.

CONCLUSION
Cryptographic hash functions have been used in many daily 
life applications. However, the knowledge about these tools are 
very little This paper is serving a as an extensive survey on 
hash functions. Starting from very basic definitions and proper-
ties, it covers design parameters and cryptanalytic attacks.  In 
tis part types of  construction methods are dealt with.
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