
Volume : 2 | Issue : 4 | April 2013 ISSN - 2250-1991

290 X PARIPEX - INDIAN JOURNAL OF RESEARCH

ABSTRACT

The design of hash functions are investigated under two subtopics which are compression functions and the construction

methods. Compression functions are the core of the hashing algorithms and most of the effort is on the compression function

when designing an algorithm. Moreover, for Merkle-Damgard hash functions, the security of the algorithm depends on the

security of the compression function. Construction method is also an important design parameter which defines the strength
of the algorithm. Construction method and compression function should be consistent

Research Paper

Construction Methods on Cryptographic Hash

Functions

* C. Krishna Kumar ** Dr. C. Suyambulingom

Mathematics

* Sathyabama University, Chennai, India

** Professor, Dept. of Mathematics, TAU, Coimbatore, India

Keywords : metrics, software, quality, estimation

1.Construction Methods
construction methods of hash functions are discussed in de-
tails. Iterative hash functions still pace a big portion of all hash
constructions. Therefore, iterative designs will be investigated
deeply.These constructions include Merkle-Damgard(MD)1,
HAIFA and some other alternative designs derived from
Merkle-Damgard. Besides, sponge constructions is included.
Sponge construction is a new and secure construction meth-
od which is becoming more popular.

1.1 Merkle-Damgård Construction
Merkle-Damgard construction is the most widely used hash
construction method, which was designed by R.Merkle [50]
and I.Damgard [33] independently in 1989. Most of the hash
functions and all the standardized hash functions are build
upon MD construction. MD construction is basically pro-
cessed in three steps. First step is the padding step. The
aim of the padding is to make the message length a multiple
of message block length, m. The most widely used padding
procedure is as follows: a ’1’ bit followed by a number of ’0’
bits and the bitwise notation of the message length are ap-
pended to the message. The number of ’0’ bits appended to
the message are chosen so that the length of the message
becomes a multiple of block length m. In general the maxi-
mum length of the message that can be processed by the
hash function is 264 − 1. Therefore 64 bit space is provided
for the length padding. Considering the appended ’1’ bit, at
least 65 bits are appended to all messages regardless of
the message length. If l is the length of the message, d, the
number of ’0’ bits appended is the smallest positive root of
the equation

l + 65 + d ≡ 0 (mod m). Second step is dividing the padded
message into m bit blocks m

0
m

1
m

2
 . . .mt−1. After this step, the

chaining values are iteratively found by using a fixed, publicly
known initialization vector, IV, and the message blocks: h0 =
IV hi = f (hi−1,mi−1) i = 1, 2 . . , t

where f is the compression function of the hashing algo-
rithm.

Generally ht is taken to be the hash value of the message.
However an optional transformation

g(x) can be applied to ht to get the hash value as H(M) = g(ht).

Figure 1.1: MD Structure

The iterative structure of MD construction enables arbitrary
length messages to be processed easily by the hash func-
tions. Also padding the message length and using a non-zero
IV, which is called is called the MD − strengthening, increases
the defeats or increases the complexity of various attacks.
The most important property of MD structure is that the col-
lision resistance property of the compression function is pre-
served [50, 33]. The MD structure has a security proof that
states if the compression function used in the hash algorithm
is collision resistant then the hash function itself is collision re-
sistant [51]. Besides collision resistancy, it was believed that
MD construction also preserves the preimage resistancy and
second preimage resistancy of the compression function [52].
However there are several attacks in recent years against the
second preimage resistency of the MD construction such as
[53, 54, 55].

1.2 HAIFA Construction
MD structure is a provable collision resistant hash construc-
tion method. However, as computing power increases and
new cryptanalytic tools are proposed, MD hash functions
become weaker and more vulnerable to attacks. Biham and
Dunkelman [52], fixing the flaws in MD structure, announced
a new construction method HAIFA(HAsh Iterative FrAme-
work). HAIFA is an iterative structure which is based on Mer-
kle-Damgard and uses additional tools to increase the secu-
rity. The compression function f takes only message blocks
mi and chaining values hi as inputs in MD hash functions. In
HAIFA, compression function inputs are number of bits (or
message blocks) hashed so far, b, and salt, s, in addition to
message block and chaining value. So the chaining values
can be expressed as hi = f (hi−1,mi−1, b, s). The number of
bits, or message blocks, hashed so far is included as an input
to prevent the fixed point attacks. In MD structure attacker
can freely inject fixed points to find a second preimage as she
needs. However, even if b is not mixed well in f , since the
inputs to the compression functions are different at each it-

Volume : 2 | Issue : 4 | April 2013 ISSN - 2250-1991

PARIPEX - INDIAN JOURNAL OF RESEARCH X 291

eration, attacker can use a fixed point very limited times. The
other input, salt, is a precaution against attacks which has
a precomputation phase. Some attacks have two phases
as on-line and off-line phases. In the off-line phase attacker
produces a number of structures which can be messages
or chaining values using some weaknesses in the hash al-
gorithm. After learning the pair (M, H(M)) she mounts the
on line phase of the attack to produce a collision or second
preimage. In HAIFA, attacker should know the salt to pro-
duce the structures but the salt is a random number which
is sent with the pair (M, H(M)) as (M, S alt, H(M, S alt)) to
the receiver. For security reasons the salt should be at least
half length of the chaining value and should be random [52].
Moreover, in the HAIFA construction, there is a standardiza-
tion of initial values for variable hash sizes. If a fixed IV is
used for all hash sizes and if for some hash sizes hash val-
ues are truncated, then some bits of the hash values of dis-
tinct sizes will be equal. For example, if one needs a 224-bit
hash value using a 256-bit hash function, he will produce the
256-bit hash value and truncate the final (or some other) 32-
bits. Therefore, the 224 bits of the 256-bit and 224-bit hash
values of a message will be common. HAIFA, uses different
IVs for different hash values, so the truncation will not cause
any problems. Another addition is padding the hash size.
Usual padding adds a ’1’ bit, some ’0’ bits to make the pad-
ded message a multiple of message block length m bits and
the bitwise notation of the length of the original message.
New construction method concatenates the bitwise notation
of hash size after length padding. This ensures that no two
messages exist which have the same hash value without
truncation for different hash sizes.

1.3 Sponge Construction
Sponge construction [56] is a new construction method for
hash functions and stream ciphers. This construction can be
built upon a function f which can be expressed as a random
permutation or random function. If f is expressed as a random
permutation, construction is called a P − sponge, otherwise,
if it is expressed as a random function, construction is called
a T − sponge. The main difference between the compression
functions of MD structures and the f function in sponge con-
struction is, unlike the compressing functions in MD or Haifa,
f is a function which maps l bit input to l bit output. The con-
struction is consisting of 2 phases: absorbing and squeez-
ing. In the first phase, data is input to the sponge iteratively
block by block and in the second phase output is given in the
same manner. These two phases have similar procedures.
In the absorbing phase, iteratively, message block is XOR-
ed or overwritten to the state and f is applied to this state.
Then, next message block is processed and so on. After all
the message blocks are input, second phase is applied. In
the squeezing phase, some part of the state is output and f
is applied to the state. Then, again some part of the state is
output and f is applied until the desired hash size is achieved.

1.4 Some Other Hash Constructions
1.4.1 Wide Pipe and Double Pipe Construction
In [57] and [58], Lucks introduced a new concept: wide pipe
hash functions. These hash functions are constructed so that
the intermediate chaining values are w bits for an n-bit hash
size with w > n. There is a final transformation at the end
which reduces the w-bit final chaining value to n bits. The aim
of the wide pipe construction is to increase the complexities
of the attacks depending on chaining values. For example, for
an n−bit hash H1 with n-bit chaining values, an attack which
finds collisions for the compression function with complexity
2 n/4, means a break for H1. However for an n-bit wide pipe
hash H2 with w-bit chaining values where w = 2n, cost of this
attack is same with exhaustive search cost and not a serious
case as H1. Another approach, by Lucks, to widen the internal
state is the double pipe hash functions. In this approach two
parallel iterations are processed. These two iterations can be
initialized with different IVs, can use different compression
functions or can iterate the message blocks in different per-
mutations. At the final step the outputs of the two iterations
are mixed to get the hash value.

1.4.2 Prefix-Free Merkle-Damgård Construction
One of the problems of MD structure is about the random-
ness: although the underlying compression function is in dif-
ferentiable from a random oracle, the hash function itself is
not guaranteed to be in differentiable from a random oracle
[59]. To solve this problem prefix-free encoding is suggested
for iterated hash functions. Prefix-free encoding (or prefix en-
coding) is v applied to the message before padding process.
The two of the suggested encoding functions are

• g
1
(M) = LM||m

0
||m

1
|| · · · ||m t−1 where LM is the message

length.
• g

2
(M) = 0||m

0
||0||m

1
||0|| · · · ||0||mt−2||1||mt−1 where 0 and 1

are single bits and mi is the (i + 1)th m − 1 bit block of the
message M.

After encoding, the message is hashed as in MD structure
and hash function becomes indifferentiable from a random
oracle.

1.4.3 Enveloped Merkle-Damgård Construction
EMD is proposed by Bellare and Ristenpart in [60] which is
a construction that preserves collision resistancy, preimage
resistancy and pseudo-randomness of the compression func-
tion. The message blocks are iterated as MD up to the final
message block. The final message block mt−1 and ht−1 are
concatenated and taken as input to another iteration with a
distinct IV. This operation is called enveloping.

Figure : EMD Construction

1.4.4 RMX Construction
RMX is presented in [61] and [62] by Halevi and Krawczyk.
The idea of RMX is randomization of the message before
padding. In this method a random string, r, of length between
smallest number of padding bits and message block length
m is produced. From this random string r, three other param-
eters, r

0
, r

1
 and r

2
, are produced: respectively by appending

zero bits to r, repeating r as many times as necessary and
taking some part of r. r

0
 is prepended to the message, r1 is

XORed with all the message blocks except padding and r
2

is XORed with the padding blocks. After obtaining the hash
value, r is stored, or send to a receiver, with the hash value.

h1 = f (IV, r
0
) ...

hi = f (hi−1, r1 ⊕ mi−2) f or i = 2, 3, ..., t

ht+1 = f(ht, r2 ⊕ mt−1)

H(M) = h
t+1

1.4.5 3C and 3C-X Constructions
3C and 3C − X are proposed by Gauravaram [63] which are
similar to double pipe hash construction. In 3C construction,
while message is iterated from the main line, there is an ad-
ditional line which takes inputs from the main iteration line. Fi-
nally the outputs of two lines are mixed to get the hash value.
The algorithm can be defined as follows

h
1
 = f (h

0
,m

0
)

z0 = h
1

hi = f (hi−1,mi−1) i = 1, 2, . . . , t

zi−1 = f (zi−2, PAD(hi)) i = 2, . . . , t

Volume : 2 | Issue : 4 | April 2013 ISSN - 2250-1991

292 X PARIPEX - INDIAN JOURNAL OF RESEARCH

ht+1 = f (ht, PAD(zt−1)

H(M) = ht+1

where PAD(x) is padding x with 0 bits until it becomes m-bits.

Figure: 3C Construction

The 3C−X construction is similar to 3C. The only difference
is that the compression functions in the second iteration line,
except the final compression function, are replaced with XOR
operations. This way construction becomes lighter.

1.4.6 Dynamic Hash Function Construction
Dynamic hashing, by Speirs [64], is a collection of iteration
lines where each line feeds the next line. This construction
has a security parameter s which can be considered as salt.
The message M is padded to be a multiple of m − n bits. A ’1’
bit followed by a number of ’0’ bits are appended to the mes-
sage. Then 64 bits message length and 32 bits representation
of s is concatenated. The number of lines, l, in the construc-

tion depends on hash size d. l is chosen such that n(l − 1) < d
≤ nl. Each line has an initial value, hi 0 which is derived from
the line number and s as hi 0 = f (IV1, IV1||s||00..0||i − 1). The
lines are interacting with each other. The output hjk of kth
iteration of line j is concatenated to mk and input to the (k + 1)
st iteration of line (j + 1) mod l, where l is the number of lines.
At the end of iterations an “envelope” operation is done with
another initial value hit +1 = f (IV2, hit ||00 · · · 0) and these
chaining values are concatenated to get the hash value using
the iterations

IVs, j = f (IV1, IV1||s||00 · · · 0||j − 1) f or j = 0, 1, . . . , l − 1,

h1, j = f (IVs, j,m0||IVs,(j−1) mod l) f or j = 0, 1, . . . , l − 1,...

h
i, j

= f (hi−1, j,mi−1||hi−1,(j−1) mod l) f or i = 2, . . . , t − 1, j =
0, 1, . . . , l − 1, ...

h
t, j

= f (IV
2
, ht−1, j||j) f or j = 0, 1, . . . , l − 1,

H(M) = g(h
t,0

||h
t,1

|| · · · ||ht,l−1,)

where g(x) is a mapping from n · l bits to hash size.

CONCLUSION
Cryptographic hash functions have been used in many daily
life applications. However, the knowledge about these tools are
very little This paper is serving a as an extensive survey on
hash functions. Starting from very basic definitions and proper-
ties, it covers design parameters and cryptanalytic attacks. In
tis part types of construction methods are dealt with.

REFERENCES

[1] Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash Functions. In EUROCRYPT, pages 19–35, 2005. | [2] Xiaoyun Wang, Xuejia Lai, Dengguo
Feng, Hui Chen, and Xiuyuan Yu. Cryptanalysis of the Hash Functions MD4 and RIPEMD. In EUROCRYPT, pages 1–18, 2005. | [3] Xiaoyun Wang, Yiqun Lisa Yin, and
Hongbo Yu. Finding Collisions in the Full SHA-1. In CRYPTO, pages 17–36, 2005. | [4] Xiaoyun Wang, Hongbo Yu, and Yiqun Lisa Yin. Efficient Collision search Attacks
on SHA-0. In CRYPTO, pages 1–16, 2005. | [5] Alfred Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied Cryptography. CRC Press, 1996. |
[6] R. Anderson. The Classification of Hash Functions. In IMA Conference in Cryptography and Coding,pages83–93, 1993. | [7] C.H. Meyer J. Oseas S.M. Matyas. Gen-
erating Strong One-Way Functions with ryptographic Algorithm. In IBM Techn. Disclosure Bull., Vol. 27, No. 10A, pages 5658–5659, 1985. | [8] S. Miyaguchi, M. Iwata,
and K. Ohta. New 128-Bit Hash Function. In Proceeding of 4th International Joint Workshop on Computer Communications, pages 279–288, 1989. | [9] B. Preneel, R.
Govaerts, and J. Vandewalle. Hash Functions Based on Block Ciphers: A Synthetic Approach. pages 368–378, 1993. | [10] D. Coppersmith M. Hyden S. Matayas C.
Meyer J. Oseas S. Pilpel B. Brachtl and M. Schiling. Data Authentication Using Modification Detection Codes Based on a Public One-Way Encryption Function. In U.
S. Patent Number 4,908,861, 1990. | [11] J. Black, P. Rogaway, and T. Shrimpton. Black-Box Analysis of the Block-Cipher-Based Hash-Function Constructions From
PGV. In In Advances in Cryptology – CRYPTO 2002, pages 320–335. Springer-Verlag, 2002. | [12] Martijn Stam. Blockcipher Based Hashing Revisited. Cryptology
ePrint Archive, Report http://eprint.iacr.org/2008/071.pdf, 2008. | [13] Lars Knudsen and Bart Preneel. Hash Functions Based on Block Ciphers and Quaternary Codes.
In Advances in Cryptology ASIACRYPT, pages 77–90, 1996. | [14] Joan Daemen and Craig Clapp. Fast Hashing and Stream Encryption with Panama,. In Fast Soft-
ware Encryption 1998, pages 60–74. Springer. | [15] Donghoon Chang, Kishan Chand Gupta, and Mridul Nandi. Rc4-hash: A New Hash | Function Based on RC4. In
INDOCRYPT, pages 80–94, 2006. |

