
Volume : 2 | Issue : 12 | Dec 2013 ISSN - 2250-1991

35 X PARIPEX - INDIAN JOURNAL OF RESEARCH

Research Paper

Cache Oblivious Sorting Algorithm Using

Sequential Processing

* Korde P. S. ** Khanale P. B

Computer Science

* Department of Computer Science Shri Shivaji College,Parbhani (M.S.) India

** Department of Computer Science Dnyopasak College Parbhani (M.S.) India

ABSTRACT

Algorithms that design which effectively utilized multi-layered memory hierarchies; it must rely on detailed knowledge of the

characteristics of memory systems. The execution of memory has depends on its capacity of running to process job. This

paper explores a simple and general approach for developing algorithmic study of cache oblivious sorting. We present three

approaches for sorting. The algorithm uses array technique that is based on sorting methods. We present here algorithm that

required minimum swapping in sorting.

Keywords : Cache Oblivious, Cache miss, Sorting, Sequential Processing Swapping

Introduction
In modern computers memory are organized memory levels
in form hierarchies, with each level storing as a data as pro-
cessing for the next. The memory have components as reg-
isters, Cache1 (level 1), Cache2 (level 2), now days Cache
3 (level 3). Each level is accessing required time when data
have larger that gives for new level. The access of memory
depends on current memory level which processing elements.

The concept of Cache oblivious gives by M.Frigo in 1999.
The new data structure for cache oblivious for various tech-
niques as matrix transposition, FFT, sorting [5], and also
gave search trees [5] cache-aware B-trees [7]. It gives new
idea and area for researcher for results cache oblivious mod-
el. Bender et al. [8] introduces new idea for dynamic search
trees that process B-trees. It gives search trees with complex-
ities matching presented in [6, 2] and variant with bounds in
present format. These algorithms used for computational ge-
ometry [1], dynamic sets [7], static trees. It also gives priority
queue [3] for designing graph algorithms.

Sorting technique is depending on processing of objects as
searching in dictionary order like word, pattern matching, etc.
The sorting algorithms like merge sort, quick sort, insertion
sort have based on number of comparison when it processed.
It gives complexity, which will have no knowledge of cache
and its level size. It was introduced by I/O model [A. Aggarwal
et.al. 88]. [Demaine 02] Its relation to multilevel memory hier-
archies are given in methods.

Various techniques can be found out for depth of cache obliv-
ious sorting. In Arge et al[L. Arge et,al 02] developed a cache
oblivious priority queue, the basic method is reduction. The
author shows priority queue can be access as sequence of
graph execution.

Bordal and Fagerberg in [G. S. Brodal et,al 02] showed how
to modify cache obvious funnel sort algorithm to solve several
problems with in computational geometry.

In this paper we give new idea for probably utilize algorithm,
the sorting of array. We want to produce the sorting meth-
ods on general computer machines. Cache Oblivious Sort-
ing Algorithm using Sequential Processing demonstrate that
it is possible to design an algorithm where memory address
copies stepwise one, which also eliminate the process for

swapping. It will therefore give basic idea of the algorithm and
present some of nice result from this approach.

Bubble Sort
A Bubble Sort is simple example of the application of the
cache oblivious sorting. It is found in [M. Frigo et.al. 99], it
was proved that Bubble Sort uses θ (n2) comparisons. The
general idea of Bubble sort is algorithm 1.

Algorithm 1 Bubble Sort

Depending upon the Programming language used, the ele-
ments of array required to execute is proportional to n2 where
n is the input items.

In this paper, we present an approach that uses an ordering
of min elements array as shown in fig 1. However our first se-
quential sorting which totally avoid the transposition process.

Fig 1: Cache Oblivious Sequential Processing Sorting

Volume : 2 | Issue : 12 | Dec 2013 ISSN - 2250-1991

36 X PARIPEX - INDIAN JOURNAL OF RESEARCH

Cache Oblivious First Sequential Processing Sorting

First we reformulate algorithm 1 in the following form as
fig 2

Fig 2 Array 2

In this process, we have used two arrays having same length.
In this method we find minimum value at every phase store
in second array list. Cache Oblivious Sequential Processing
Sorting shows the locality of the element access. It shows
better benefit and cache memory utilization. In Bubble sort
method process execute form left to right according to per-
mutation. It moves largest value by exchanging between right
adjacent elements from lowest level. In this sorting user must
complete n-1 passes. The outcome of every pass is one ele-
ment is placed in correct place.

The total number of comparisons is obviously at most n2, so
it only needs to consider the lower bound. For a permutation

 of elements 1, 2, -------- n. it describe the total number of
exchanges by 1. For Bubble sort it shows in 1.

 ---------(1)

In First sequential processing sorting we move minimum
number from array and store into array 2. These processes
repeat n times. In this method there are eliminating process
of swapping and exchanging elements.

Cache Oblivious Second Sequential Processing Sorting
In Second process, we have used single arrays. In this meth-
od we sort only half part of array list as shown in fig 3. The
remaining part of array list we processed further in next loop.
It shows the better locality of the element access and can
benefit from the presence of cache memory.

Fig 3: Cache Oblivious Second Sequential Processing
Sorting

In Second process, we have used single arrays. In this meth-
od we sort only half part of array list as shown in fig 3. The
remaining part of array list we processed further in next loop.
It shows the better locality of the element access and can
benefit from the presence of cache memory. In this sequen-
tial processing sorting we move minimum comparison from
array to sort the list. These processes repeat n-i/2 times in
first half, in second time it requires n/2-i time comparison. In
this method there are eliminating process of swapping and
exchanging elements.

Cache Oblivious Third Sequential Processing Sorting
In third event as shown in fig 4, we have used two arrays. In

this process we start simultaneously sorting as ascending as
half part in first array list and descending as second half part.
Both process ascending and descending continuously run at
same time in different array list. It shows the good locality
of the element access and can benefit from the presence of
cache memory.

Fig 4: Cache Oblivious third Sequential Processing Sort-
ing

In third sequential processing sorting we move same com-
parison from array to sort the list as bubble sort techniques.
These processes repeat n-i/2 times in first half, in second time
it requires n-i/2 time comparison. In this method there are di-
viding process of sorting and exchanging elements.

In this process we formulate the Bubble sort method; here we
used two arrays as array 1 and array 2. In first array we find
the location of min value and place as null value and copy
value in array 2. The process may continue up to last ele-
ments. Every phase we must store min value as max value. It
is compulsory for every external loop.

We process n passes, since after all one element in the
correct place the last remaining element must be also in its
correct place. The total number comparisons are at most n2.
By using same technique we may design algorithm 3 Cache
oblivious Sequential Sorting for descending.

In second sequential processing we process only half part
sorting the value array while processing and reformulate the
algorithm 1 as algorithm 4.

We used single arrays as array 1. In this array we compare

Volume : 2 | Issue : 12 | Dec 2013 ISSN - 2250-1991

37 X PARIPEX - INDIAN JOURNAL OF RESEARCH

the elements and place as largest or smallest element of val-
ue in same array. The second phases we continually process
continue in another loop having n-2-I time comparisons up to
last elements. Every phase we must store value. It is compul-
sory for every external loop.

We make at most n passes, since after moving all but one el-
ement in the correct place the single remaining element must
be also in its correct place. The total number of exchanges is
obviously at most n2-i so we only need to consider the lower
bound. By using same technique we may design algorithm
Cache oblivious Sequential Sorting for descending.

In third sequential processing, simultaneously start ascending
and descending process in different array list as first and sec-
ond half list. Then we get perfect sorted list after combination.
Only half part sorting the value array while processing and
reformulate the algorithm 1 as algorithm 5.

We used single arrays as array. In first array we compare
the elements and place as ascending order manner, smallest
element of value in same array. The second array at same
we continually process descending order manner, largest el-
ement of value in another array. Every phase we must store
value. It is compulsory for every external loop.

We make at most n passes, since after moving all but one el-
ement in the correct place the single remaining element must
be also in its correct place. The total number of exchanges is
obviously at most n2-i/2 for every half loop so we only need
to consider the lower bound. By using same technique we
may design algorithm Cache oblivious Sequential Sorting for
descending.

Sequential Sort Analysis
The number of comparison between elements and the num-
ber of exchange between elements determine the efficiency
of Sequential Sort algorithm. Generally, the number of com-
parisons between elements in Sequential Sort can be stated
as follows

(n – 1)+ (n – 2)+……. + 2 + 1 = n (n – 1) / 2 = O (n2)

The ith (i ≤ n − 1) pass performs (n – i) comparisons and at
most (n – i) comparison. Hence, the pass takes (n – i) time.

It was proved that [1] sorting requires O (log
M/B

)

block transfers and permuting an array requires

O (min { log
M/B

)

block transfers where O is number of elements to sort, N is
total number of lines, M is number of words fitting in the main
memory, and B is number of words per disk block. Lower
bounds hold for the cache-oblivious model. The lower bounds
from [1] immediately give a lower bound of

Ω (log
M/B

)

block transfers for cache-oblivious sorting. The upper bound
from [1] cannot be applied to the cache-oblivious setting since
these algorithm make explicit use of B and M.

Implementation
Algorithm 2,3,4,5 are simple scheme we developed in pre-
vious sections. The algorithm takes n-i phases as 1, 2 ----- 5
techniques to indicate the sorting process. In programming
language like C or C++, Java directly used these schemes.

In programming language C or C++ the counter we may de-
sign cache oblivious sequential sorting code.

How ever we compare algorithm 1,2,3,4,5 with different array
size and their execution speed shown in table 1.

Sr.
no.

Array
Size

Bubble
Sort

First
Sequential
Sort

Second
Sequential
Sort

Third
Sequential
Sort

01 10 0.164835 0.164835 0.164835 0.164835
02 100 0.274725 0.274725 0.274725 0.274725
03 500 0.659341 0.659341 0.659341 0.659341
It may convert in graphical format as shown in fig 3.

Fig 3: Time required for Bubble sort and Sequential Sort.

We want to emphasize that as in fig 3 that is not the aim of
method to produce the fastest algorithm for sorting on spe-
cific computer architecture. We want to demonstrate that it
is possible to construct an algorithm where memory address
copy only with stepwise one and it present nice properties
that result from this approach.

Conclusion
We have presented three sequential processing for sorting
algorithm which shows better locality features. Using ideal
cache model cache misses is of order of O (log

M/B
)

levels of data for cache. It is optimal for any algorithm that is
based on sorting. Our methods give minimum swapping for
address arithmetic. While this fact is not standard environ-
ment, it may be considerable advantage for implementations
of sorting techniques.

Volume : 2 | Issue : 12 | Dec 2013 ISSN - 2250-1991

38 X PARIPEX - INDIAN JOURNAL OF RESEARCH

REFERENCES

] A. Aggarwal and J. S. Vitter. 1988, The input/output complexity of sorting and related problems. Communications Proceedings of the ACM, 31(9):1116–1127 www.
cc.gatech.edu/~bader/COURSES/UNM/ece637-Fall2003/.../AV88.pdf | 2] Demaine, E.D 2002, Cache-oblivious algorithms and data structures. Proceedings of Lecture
Notes from the EEF Summer School on Massive Data Sets. , BRICS, University of Aarhus, Denmark erikdemaine.org/papers/BRICS2002/paper.pdf | 3] G. S. Brodal
and R. Fagerberg,2002 Cache oblivious distribution sweeping. In Proc. 29th International Colloquium on Automata, Languages, and Programming, volume 2380 of
Lecture Notes in Computer Science, Springer Verlag, Berlin. pages 426–438. www.mpi-inf.mpg.de/...of.../Brodal-Fagerberg-DistributionSweeping.pdf | 4] L. Arge, M. A.
Bender, E. D. Demaine, B. Holland- Minkley, and J. I. Munro,2002 -Cache-oblivious priority queue and graph algorithm applications?, In ACM, editor, Proceedings of the
34th Annual ACM Symposium on Theory of Computing (STOC ’02), ACM Press, pages 268– 276.www.cc.gatech.edu/~bader/COURSES/UNM/ece637.../ABD02b.pdf
| 5] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran.1999 Cache-oblivious algorithms. In Proc. 40th Annual Symposium on Foundations of Computer Sci-
ence, IEEE Computer Society Press. pages 285 297.www.cc.gatech.edu/~bader/COURSES/GATECH/CSE6140.../FLP99.pd | 6] Piyush Kumar 2009 “Cache Oblivious
Algorithms” Department of Computer Science State University of New York at Stony Brook Stony Brook, NY 11790, USA com/co-chap/y MPI-Saarbr ucken. NSF (CCR-
9732220, CCR-0098172) Sandia National Labs. | piyush@acm.org http://www.compgeom. www.informatik.uni-trier.de/~ley/pers/hd/k/Kumar:Piyush | 7] R. Bayer and E.
McCreight. 1972 Organization and maintenance of large ordered indexes. Acta Informatica, 1:173–189 .link.springer.com/content/pdf/10.1007/978-3-642-59412-0_15.
pdf | 8] M. A. Bender, E. Demaine, and M. Farach-Colton.2000 Cache-oblivious B-trees. In Proc. 41st Ann. Symp.on Foundations of Computer Science, IEEE Computer
Society Press. pages 399–409. erikdemaine.org/papers/CacheObliviousBTrees_SICOMP/paper.pdf | |

