
Volume : 2 | Issue : 12 | Dec 2013 ISSN - 2250-1991

174 X PARIPEX - INDIAN JOURNAL OF RESEARCH

Use of Various Algorithms For Cryptosystem

* C. Sajeev ** C. Suyambulingom

* Research Scholar , Sathyabama University

** Professor (Rtd.), Tamilnadu Agricultural University , Coimbatore

ABSTRACT

The idea of information security lead to the evolution of Cryptography. In other words, Cryptography is the science of keeping

information secure. It involves encryption and decryption of messages. Encryption is the process of converting a plain text

into cipher text and decryption is the process of getting back the original message from the encrypted text. Cryptography, in

addition to providing confidentiality, also provides Authentication, Integrity and Non-repudiation. The crux of cryptography lies
in the key involved and the secrecy of the keys used to encrypt or decrypt. Another important factor is the key strength, i.e. the
size of the key so that it is difficult to perform a brute force on the plain and cipher text and retrieve the key. There have been
various cryptographic algorithms suggested

Keywords : Elliptic curve cryptography, Public Key Systems

Research Paper Mathematics

I Diffie-Hellman (DH) public-key algorithm
Diffie-Hellman is not an encryption mechanism as we normal-
ly think of them in that we do not typically use it to encrypt
data. Instead, it is a protocol to securely exchange the keys
that encrypt data. Diffie-Hellman accomplishes this secure
exchange by creating a “shared secret” (sometimes called
a “Key Encryption Key” or KEK) between two devices. The
shared secret then encrypts the symmetric key for secure
transmittal. The symmetric key is sometimes called a Traffic
Encryption Key (TEK) or Data Encryption Key (DEK). There-
fore, the KEK provides for secure delivery of the TEK, while
the TEK provides for secure delivery of the data itself.

The protocol has two system parameters p and g. They are
both public and may be used by all the users in a system. Pa-
rameter p is a prime number and parameter g (usually called
a generator) is an integer less than p, with the following prop-
erty: for every number n between 1 and p-1 inclusive, there is
a power k of g such that n = gk mod p. To make a more simple
description we shall imagine two people – Alice and Bob who
want to securely exchange data.

Suppose Alice and Bob want to agree on a shared secret key
using the Diffie-Hellman key agreement protocol. They pro-
ceed as follows: Alice and Bob agree on a finite cyclic group
G and a generating element g in G. (This is usually done long
before the rest of the protocol; g is assumed to be known by
all attackers). First, Alice generates a random private value
a and Bob generates a random private value b. Both a and
b are drawn from the set of integers . Then they derive their
public values using parameters p and g and their private val-
ues. Alice’s public value is ga mod p and Bob’s public value
is g

b mod p. They then exchange their public values. Finally,
Alice computes gab = (gb)a mod p, and Bob computes gba =
(ga)b mod p. Since gab = gba = k, Alice and Bob now have a
shared secret key k. The important point is that the two values
generated are identical. They are the “Shared Secret” that
can encrypt information between systems .

Here is an example of the protocol, with non-secret and
secret values:
Alice and Bob agree to use a prime number p=23 and base
g=5.

Alice chooses a secret integer a=6, then sends Bob A = ga

mod p

A = 56 mod 23 = 8.

Bob chooses a secret integer b=15, then sends Alice B = gb

mod p

B = 515 mod 23 = 19.

Alice computes s = B a mod p

196 mod 23 = 2.

Bob computes s = A b mod p

815 mod 23 = 2. [8]

At this point, the Diffie-Hellman operation could be consid-
ered complete. The shared secret is a cryptographic key that
could encrypt traffic. That is very rare however because the
shared secret is an asymmetric key. As with all asymmetric
key systems, it is inherently slow. If the two sides are passing
very little traffic, the shared secret may encrypt actual data.
Any attempt at bulk traffic encryption requires a symmetric
key system such as DES, Triple DES, or Advanced Encryp-
tion Standard (AES), etc. In most real applications of the Dif-
fie-Hellman protocol (SSL, TLS, SSH, and IPSec in particu-
lar), the shared secret encrypts a symmetric key for one of the
symmetric algorithms, transmits it securely, and the distant
end decrypts it with the shared secret. Because the symmet-
ric key is a relatively short value (256 bits for example) as
compared to bulk data, the shared secret can encrypt and
decrypt it very quickly.

Which side of the communication actually generates and
transmits the symmetric key varies. However, it is most com-
mon for the initiator of the communication to be the one that
transmits the key.

Once secure exchange of the symmetric key is complete,
data encryption and secure communication can occur.
Changing the symmetric key for increased security is simple

Volume : 2 | Issue : 12 | Dec 2013 ISSN - 2250-1991

175 X PARIPEX - INDIAN JOURNAL OF RESEARCH

at this point. The longer a symmetric key is in use, the easier
it is to perform a successful cryptanalytic attack against it.
Therefore, changing keys frequently is important. Both sides
of the communication still have the shared secret and it can
be used to encrypt future keys at any time and any frequen-
cy desired. In some IPSec implementations for example, it
is not uncommon for a new symmetric Data Encryption Key
to be generated and shared every 60 seconds. The protocol
depends on the discrete logarithm problem for its security.
It assumes that it is computationally infeasible to calculate
the shared secret key k = gab mod p given the two public
values ga mod p and gb mod p when the prime p is sufficient-
ly large. It is stated that breaking the Diffie-Hellman protocol
is equivalent to computing discrete logarithms under certain
assumptions.

II. RSA Algorithm
RSA algorithm has to be described with an example.
Generating Public and Private Keys
Before any transmission happens, the Server had calculated
its public and secret keys. Here is the way.

1) pick two prime numbers, we’ll pick p = 3 and q = 11
2) calculate n = p * q = 3 * 11 = 33
3) calculate z = (p - 1) * (q - 1) = (3 - 1) * (11 - 1) = 20
4) choose a prime number k, such that k is co-prime to z, i.e,

z is not divisible by k. We have several choices for k: 7,
11, 13, 17, 19 (we cannot use 5, because 20 is divisible
by

5). Let’s pick k=7 (smaller k, “less math”).
5) So, the numbers n = 33 and k = 7 become the Server’s

public key.
6) Now, still done in advance of any transmission, the Server

has to calculate it’s secret key. Here is how.
7) k * j = 1 (mod z)
8) 7 * j = 1 (mod 20)
9) (7 * j) / 20 = ? with the remainder of 1.

Since we selected (on purpose) to work with small numbers,
we can easily conclude that 21 / 20 gives “something” with the
remainder of 1. So, 7 * j = 21, and j = 3. This is our secret key.
We MUST NOT give this key away.

Now, after the Server has done the above preparatory calcu-
lations in advance, we can begin our message transmission
from our Browser to the Server. First, the Browser requests
from the Server, the Server’s public key, which the Server
obliges, i.e., it sends n=33 and k=7 back to the Browser. Now,
we said that the Browser has a Plain message P=14, and it
wants to encrypt it, before sending it to the Server. Here is
how the encryption happens on the Browser.

Encrypting the message
Here is the encryption math that Browser executes.

1) P ^ k = E (mod n) “^” means “to the power of” P is the
Plain message we want to encrypt n and k are Server’s
public key (see Section 1) E is our Encrypted message
we want to generate After plugging in the values, this
equation is solved as follows:

2) 14 ^ 7 = E (mod 33) This equation in English says: raise
14 to the power of 7, divide this by 33, giving the remain-
der of E.

3) 105413504 / 33 = 3194348.606 (well, I lied when I said
that this is “Pencil and Paper” method only. You might
want to use a calculator here).

4) 3194348 * 33 = 10541348
5) E = 105413504 - 10541348 = 20

So, our Encrypted message is E=20. This is now the value
that the Browser is going to send to the Server. When the
Server receives this message, it then proceeds to Decrypt it,
as follows.

Decrypting the Message
Here is the decryption math the Server executes to recover

the original Plain text message which the Browser started
with.

1) E ^ j = P (mod n) E is the Encrypted message just re-
ceived j is the Server’s secret key P is the Plain message
we are trying to recover n is Server’s public key (well
part of; remember that Server’s public key was calculated
in Section 1 as consisting of two numbers: n=33 and k=7).
After plugging in the values:

2) 20 ^ 3 = P (mod 33)
3) 8000 / 33 = ? with the remainder of P. So to calculate this

remainder, we do:
4) 8000 / 33 = 242.424242..
5) 242 * 33 = 7986
6) P = 8000 - 7986 = 14, which is exactly the Plain text mes-
sage that the Browser started with.

III. DES Algorithm
The DES algorithm uses the following steps:

Step 1: Create 16 subkeys, each of which is 48-bits long.
The 64-bit key is permuted according to the following table,
PC-1. Since the first entry in the table is “57”, this means that
the 57th bit of the original key K becomes the first bit of the
permuted key K+. The 49th bit of the original key becomes
the second bit of the permuted key. The 4th bit of the original
key is the last bit of the permuted key. Note only 56 bits of the
original key appear in the permuted key.

 PC-1

 57 49 41 33 25 17 9

 1 58 50 42 34 26 18

 10 2 59 51 43 35 27

 19 11 3 60 52 44 36

 63 55 47 39 31 23 15

 7 62 54 46 38 30 22

 14 6 61 53 45 37 29

 21 13 5 28 20 12 4

Step 2: Encode each 64-bit block of data.

There is an initial permutation IP of the 64 bits of the message
data M. This rearranges the bits according to the following ta-
ble, where the entries in the table show the new arrangement
of the bits from their initial order. The 58th bit of M becomes
the first bit of IP. The 50th bit of M becomes the second bit of
IP. The 7th bit of M is the last bit of IP.

 IP

 58 50 42 34 26 18 10 2

 60 52 44 36 28 20 12 4

 62 54 46 38 30 22 14 6

 64 56 48 40 32 24 16 8

 57 49 41 33 25 17 9 1

 59 51 43 35 27 19 11 3

 61 53 45 37 29 21 13 5

 63 55 47 39 31 23 15 7

Decryption is simply the inverse of encryption, following the
same steps as above, but reversing the order in which the
sub keys are applied.

Volume : 2 | Issue : 12 | Dec 2013 ISSN - 2250-1991

176 X PARIPEX - INDIAN JOURNAL OF RESEARCH

IV ECC Algorithm

An Elliptic Curve is a set of point on a curve 2 3y x ax b= + +
given certain real numbers a and b . For example

Elliptic Curve Groups: The set of points on an elliptic curve,
plus a special point ∞ form and additive group. The addition
of two points on an elliptic curve is defined geometrically, as
shown in the following example.

Elliptic Curve Encryption Algorithms depend on the difficulty of
calculating kP where k is a product of two large primes and
P is an element in the Elliptic Curve Group. Geometrically to
add a point P to it self you first construct the tangent line to
the curve at the point. Then the line will intersect the curve at
only one point, and the addition of 2P is then defined to be the
negative of the point of intersection as seen below.

Elliptic curve groups over real numbers are not practical for
cryptography due to slowness of calculations and round-off
error. This Elliptic Curves over Finite Fields are used. An
elliptic curve over a finite field

pF of characteristic greater
than three can be formed by choosing the variables a and b
within the field

pF
.

the elliptic curve is then the set of points (,)x y which sat-
isfy the elliptic curve equation 2 3y x ax b= + + modu-
lo p , where , px y F∈ ; together with a special point ∞ . If

3x ax b+ + contains no repeated factors, or equivalently if
3 24 27 0(mod)a b p+ ≡ , then these points form a group.

It is well known that ECG (the Elliptic Curve Group) is an ad-
ditive abelian group with ∞ serving as its identity element.

Example: In the ECG of 2 3 2y x x= + over the field 23F the
point (9,5) satisfies the equation 2 3 2 (mod 23)y x x≡ + as
25 729 9(mod 23)≡ + . The elements of this ECG are given
in the picture below.

3 1 3 1()y x x yλ= − − 2

3 1 2x x xλ= − − Obviously we no lon-
ger have a curve to define our addition geometrically.
Emulating the geometric construction for addition, the
formulas for addition over pF (characteristic 3) are
given as follows: Let 1 1(,)P x y and 2 2(,)Q x y be ele-
ments of the ECG. Then

3 3(,)P Q x y+ = , where

and

2 1

2 1

2

1

1

3

2

y y
if P Q

x x

x a
if P Q

y

λ

− ≠ −= 
+ =



These formulas can be easily calculated with computers. For
field of characteristic 2 the equations for addition are worse!
At the heart of every cryptosystem is a hard mathematical
problem that is computationally infeasible to solve. The Dis-
crete Logarithm Problem is the basis for the security of many
cryptosystem including the Elliptic Curve Cryptosystem.

Definition of the Discrete Logarithm Problem:
In the multiplication group

pF
× , the discrete logarithm problem

Volume : 2 | Issue : 12 | Dec 2013 ISSN - 2250-1991

177 X PARIPEX - INDIAN JOURNAL OF RESEARCH

that is: Given elements r and q in
pF
× , find a number k such

that (mod)r qk p= .

Similarly the Elliptic Curve Discrete Logarithm Problem is:
Given points P and Q in an ECG over a finite field find an
integer k such that Pk Q= . Here k is called the discrete log
of Q to the base P.

This doesn’t seem like a difficult problem, but if you don’t
know what k is calculating Pk Q= takes roughly 22k oper-
ations. So if k is say, 160 bits long, then it would take about

802 operations. To put this into perspective, if you could do
a billion operations per second, this would take about 38 mil-
lion years. This is a huge savings over the standard public
key encryption system where 1024 and 3074 bit keys are rec-
ommended. The smaller size of the keys for Elliptic Curve
Encryption makes it idea for applications such as encrypting
cell-phone calls, credit card transactions, and other applica-
tions where memory and speed are an issue. There are pros
and cons to both ECC and RSA encryption. ECC is faster
tha RSA for signing and decryption, but slower than RSA for
signature verification and encryption.

V. Conclusion
In this paper we perused the concept of Cryptography in-
cluding the various schemes of system based on the kind of
key and a few algorithms such as RSA and DES. We knew in
detail the mathematical foundations for elliptical curve based
systems, basically the concepts of rings, fields, groups, Ga-
lois finite fields and elliptic curves and their properties. The
various algorithms for the computation of the scalar product of
a point on the elliptic curve were known and their complexity
were analyzed.

The advantage of elliptic curve over the other public key sys-
tems such as RSA, DES etc is the key strength. The following
table summarizes the key strength of ECC based systems in
comparison to other public key schemes.

RSA/DES Key length ECC Key Length for Equivalent
Security

1024 160

2048 224

3072 256

7680 384

15360 512

Comparison of the key strengths of RSA/DES and ECC
From the table it is very clear that elliptic curves offer a com-
parable amount of security offered by the other popular public
key for a much smaller key strength. This property of ECC
has made the scheme quite popular of late.

Over the years, there have been software implementations of
ECDSA over finite fields such as 1552

F , 1672
F , 1762

F , 1912
F

and Fp (p: 160 and 192 bit prime numbers). Schroppel et
mentions an implementation of an elliptic curve analogue of
the Diffie-Hellman key exchange algorithm over 1552

F with a
trinomial basis representation. The elliptic curve based public
key cryptography schemes has been standardized by the In-
stitute of Electrical and Electronic Engineers (IEEE) and the
standard is available as IEEE P1363.

REFERENCES

[1] Diffie, W., and Hellman, M. “Multiuser Cryptographic Techniques.” IEEE Transactions on Information Theory, November 1976. | [2] A. J. Menezes, P. C. van Oorshot,
and S. A Vanstone, Handbook of Applied Cryptography. CRC Press, New York, New York, 1997. | [3] P. C. van Oorschot and M. J. Wiener, On Diffie-Hellman Key
Agreement with Short Exponents. EUROCRYPT’96, LNCS 1070, Springer-Verlag, 1996, pp. 332–343. | [4] Popek, G., and Kline, C. “Encryption and Secure Computer
Networks.” ACM Computing Surveys, December 1979. | [5] Kohnfelder, L. Towards a Practical Public-Key Cryptosystem. Bachelor’s Thesis, M.I.T., May 1978. | [6] Den-
ning, D. “Protecting Public Keys and Signature Keys.” Computer, February 1983. |

