
Volume : 2 | Issue : 2  | february 2013 ISSN - 2250-1991

58  X PARIPEX - INDIAN JOURNAL OF RESEARCH

Research PaperResearch Paper

t
* Department Of Computer Science & I.T., Shree M & N Virani Science College, Rajkot – 360 002

t ** Head, Department of Computer Science,J. H. Bhalodia Women's College, Rajkot - 360 002

 An Investigation Into the Field of 

Cryptography and Cryptographic Algorithm 

Protocols

*Pratik A Vanjara **Dr. Kishor Atkotiya

ABSTRACT

The field of Information Security and the subfield of cryptographic Algorithm protocols are both vast and continually evolving 
and expanding fields. The use of cryptographic protocols as a means to provide security to web servers and services at the 
transport layer, by providing both Encryption and authentication to data transfer, has become increasingly popular. I intend To 
discuss the need for research into cryptography and to look at existing cryptographic Algorithms, cryptographic protocols and 
related concepts. Finally I intend to look at some related work in detecting encrypted applications.

Computer Science

Introduction
This paper introduces and defines concepts relating to cryp-

tography, cryptographic algorithm protocols, issues relating 
to cryptography and the development of software frame-

works. Cryptography is the discipline, art and science of 
ensuring that messages are secure from possible “attacks”, 
whether these “attacks” be eavesdropping, impersonation 
or corruption. Cryptography provides security through a 
number of mathematical transformations that can be proven 
to be mathematically secure provided some optimum con-

ditions. We however need to cognizant that cryptography 
on its own is insufficient to ensure a high level of security 
within an organization, that is to say that cryptography is not 
the silver bullet to solve all information security issues and 
should be used in conjunction with good security practices. 
Cryptography, like the Information Security field itself, is an 
incredibly broad field involving many existing disciplines 
such as abstract algebra to provide mathematical proofs 
for the guaranteed correctness of an algorithm, statistics for 
analysis of cryptographic algorithms and quantum physics 
for quantum based random number generation for quantum 
cryptography. In this literature review I intend to discuss 
some cryptographic principles, cryptographic algorithms 
and the related processing and security costs of employing 
these algorithms.

Cryptographic algorithm protocols are a vital component of 
Information Security as a means of securing modern net-
works against would-be attackers by providing data integrity, 
encryption and authentication to network traffic at the trans-

port layer. Sensitive information, such as banking details, 
that transverses networks will most likely do so through an 
encrypted tunnel provided by the cryptographic algorithm 
protocol; it is thus imperative that both the protocol itself is 
secure and the applications use of the protocol is correct and 
sensible. A recent paper by Lee et al. shows that in a study of 
over 19000 web servers, 98.36% of the servers provided sup-

port for TLS and 97.92% provided support for SSLv3.0 and 
85.37% provided support for SSLv2.0. These statistics serve 
to show the prevalence of SSL/TLS and the need to support 
these protocols.

Cryptography
Cryptography is a common component of any Information Se-

curity infrastructure; whether it before the encryption of large 
files for secure long term storage or ensuring that communi-
cation lines are safe for the transfer of confidential informa-

tion. In this section I discuss two basic schemes ofCryptog-

raphy, symmetric cryptography and public key cryptography, 

also outlining cryptographic Hash functions.

Symmetric Cryptography
Symmetric cryptography, also known as secret key cryptog-

raphy, has been in use since ancient times and has a wide 
variety of different implementations ranging from simple 
substitution ciphers such as Caesars Cipher to complex and 
supposedly “mathematically unbreakable” algorithms such as 
AES. Symmetric key encryption makes use of a single key 
that must be kept secret, this key is used for both the encryp-

tion and decryption of messages to be sent or stored. I will 
outline some of these functions, how they work and the rela-

tive amount of work required to perform each.

The Data Encryption Standard (DES)
The Data Encryption Standard was developed by IBM and 
was selected in 1976 as an official

Federal Information Processing Standard for the United 
States. The original DES algorithm used a 64-bit key, of which 
8-bits are used for parity and the remaining 56-bits are used 
to encrypt the plain-text. The required computations for brute 
forcing a DES key would be 255 operations, given a 64-bit 
plain-text and 64-bit DES key. While the DES algorithm itself 
is considered to be resistant to cryptanalysis, the actual keys 
used for encryption are considered to be fairly weak. The 
DES algorithm consists of three phases.

Phase 1
The first 64-bits of plain-text, which we will call collectively, 
x, run through an Initial Permutation function, which we 
shall denote as IP, returning 64-bits of output, which we 
will call x0. We can mathematically represent this as x0 = 
IP(x): The output is separated into equal length sections, 
obviously consisting of 32-bits each. We will represent this 
separation as L0R0, where L0 represents the first 32-bits 
and R0 represents the remaining 32-bits. Further we de-

fine an inverse function of the Initial Permutation function, 
which we call IIP.

Phase 2
The output then undergoes 16 repetitions of a computation 
that is key dependent using some cipher function, which we 
shall call f, making use of a key scheduling function which we 
shall call KS. A key scheduler calculates all the sub-keys for 
each round or iteration. The output of each iteration or round 
can be represented as xi = LiRi with 1 ≤ i ≤ 16 with Li = Ri - 1 
and Ri = Li f(Ri – 1,Ki). The Ki’s are 48-bit blocks that can be 
derived from the original 56-bit String using KS.
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Phase 3
In the final phase, IP is applied to x16to give another 64-bit ci-
pher block which we will call C, i.e. C = IIP(x16) = IIP(R16L16). 
We note the inverse property applies, that is IIP(IP(x)) = x.

The Cryptographic Hash function, f
Firstly, this function will expand the Ri’s from their 32-bit block 
to a 48-bit block through an expansion permutation. Essen-

tially this function increases the bit length by reusing some of 
the bits in the R’is, and also re-ordering them making use of 
a lookup table. We then exclusive-or this output together with 
Ki. This result is then broken up in 8 blocks of 6-bits each. 
These 6-bit blocks are then passed through an S-box giving 
an output of 4-bits. The S-box takes the first bit and the last bit 
of the input forming a 2-bit binary number. The base10 value 
of this 2-bit number is used to select a row. The remaining in-

ner 4-bits are used to select a column number. These row and 
column values are used to index a value from the S-box. The 
4-bit output of each of these 8 boxes is then concatenated to 
yield a 32-bit output which is finally given to the permutation 
function P which gives a result of 32-bits.

Key Scheduling
The key scheduling function, KS, is used to make the 48-bit 
Ki’s from the original 56-bit key. We note that while DES keys 
are 64-bit, only 56-bits are actually used to seed the random 
functions as 8-bits are used for error checking. Every 8th bit 
(i.e 8th, 16, 24 ... 64) is used for parity. The key scheduling 
functions consist of two permutation functions, PC1and PC2, 
where PC stands for

Permutation Choice. To select the Ki’s we apply the following 
algorithm. Given a 64-bit key K, we discard the 8- bits used for 
parity and apply PC1 to the remainder of the key. This can be 
represented as PC1(K) = C0D0 where C0 represents the first 
28-bits and D0 represents the remainder. PC itself has two 
components, with the first half determining Ci and the second 
half determining Di. To calculate the individual CiDi we apply 
a LSi function, which represents the number of left cylindrical 
shifts, this is a value which is either 1 or 2, by which Ci or Di 
is to be shifted. That is Ci = LSi(Ci - 1) and Di = LSi(Di - 1).

The Li function is yet another look up table function. The bits of 
Ci and Di are then concatenated together and PC2 is applied 
to the output of the concatenation, that is Ki = PC2(Ci;Di). For 
decryption the same key is used, but the order of functions 
applied is reversed.

AES
The AES accepted candidate, Rijndael, was designed by John 
Diemen and Vincent Rijmen from Belgium and was published 
in 1998, it is an iterated block cipher allowing for variable 
key length and allows for a choice from a number of different 
block size. Rijndael supports block sizes of 128-bits, 192-bits 
and 256-bits. Rijndael is byte orientated, compared to the bit 
orientated nature of DES. The number of rounds or iterations 
applied is dependent on the sizes of the block and the key 
used. For example if the block size is 128-bits and if we let m 
be the size of key and r the number of rounds is given by r = 
k/32+6. At the start a 128-bit block of plain-text is used as the 
initial state. This initial state will be passed through a number 
of key-dependent transformations, finally returning a 128-bit 
block of plain-text. A state is treated as a 4x4 matrix, where 
Ai;j will represent a single byte with 0 ≤ i; j ≤ 3, i referring to the 
rows and j referring to the columns. For example A0;0 is the 
first byte and A1;0 is the 5th byte. Rijndael makes use of four 
basics operators to allow for transformation from one state, 
say A = (Ai;j), to another state, say. The set of operators used 
by Rijndael include the following four operators.

Operator 1 : Byte Substitution
This is a non-linear permutation that operates on each byte in the 
current state independently, allowing for parallelism. In this phase 
we take 8-bytes of the 16-byte phase a multiply them an 8 x 8 
matrix, i.e. matrix multiplication of an 8 x 8 matrix by a 8x1 column 
vector resulting in a 8x1 column vector. This can be efficiently 
implemented by making use of a 256-bit lookup table or an

S-box 
Operator 2 : Shift Row
This is a cyclic shift of the bytes in a state. his could be repre-

sented as say Bi;j = Ai;(j+1)mod4.

The first row will undergo no changes, owever the second row 
will shift one column, the third row shifts two columns and the 
third row will shift three columns

Operator 3 : Mix column
Each of the columns Ai undergoes a linear transformation. A 
transformation is applied to a column at a time and is equiva-

lent to multiplying the columns contents by a 4 x 4 matrix, that 
is matrix multiplication of a 4 x 4 matrix with a 4 x 1 column 
matrix containing the columns values

Operator 4 : Round Key Addition
For every round a round key, RK, is generated from the ci-
pher key via the key scheduling function. The round key is the 
same length as the encryption block and are represented in a 
4 x 4 matrix, similar to how the plain-text is represented. We 
then perform exclusive or the round key with the current state

Cryptographic Algorithm Protocols
We may define a protocol as a series of steps taken in order 
to achieve some goal. In the case of Cryptographic algorithm 
protocols, the goal is to allow for the secure communication of 
parties by agreeing upon some standards that are to be used 
to encrypt/decrypt the messages sent.

Architecture of TLS/SSL
It is important to understand the underlying architecture for 
each of cryptographic protocols. We will consider the archi-
tecture of TLS focusing solely on the Handshake Phase, as it 
is the most Significant to the development of the framework. 
Firstly, we consider some of the goals of SSL/TLS as these 
goals dictate the structure of TLS. TLS aims to provide a se-

cure connection between two parties with interoperability, ex-

tensibility, allowing for incorporation of encryption algorithms 
or hashing functions and efficiency provided by caching . We 
will consider basic architecture of TLS as it is very similar to 
the architecture of SSL 3.0. For our purposes, we need only 
to consider the Handshake phase of SSL

The Handshake
During this phase decisions are made as to what crypto-

graphic parameters are to be used for the actual TLS connec-

tion. This include deciding on the protocol version, selecting a 
cipher suite and performing some secret key exchange. The 
client sends a client hello message to the server. The server 
then possibly responds with a server hello message. If there 
is no response then a fatal error occurs and the connection is 
closed. These hello messages establish: the protocol version 
to be used, session ID, cipher suite to be used, compression 
algorithm to use, clientHello.random and ServerHello.ran-

dom. The actual key exchange may consist of up to four mes-

sages containing: the Server Certificate, the Client Certificate, 
the Server Key exchange and the Client Key exchange. If the 
Server Certificate is to be authenticated it is sent after the hel-
lo messages phase. Following that the Server Key exchange 
message may be sent if necessary. If the server passes the 
authentication, it may request the

Client Certificate (if the client has one and if it is required by 
the cipher suite). The server then sends a Hello Done mes-

sage back to the client indicating the end of the Hello Message 
part of the handshake is complete. The server then waits for 
a for a client response. If the certificate request message was 
sent then the client needs to respond with a certificate. The 
client will then send its Client Key exchange message with the 
contents dependent on the public key encryption algorithm 
chosen. After the exchanges have taken place a Change Ci-
pher Suite Message is sent from the client to server. The cli-
ent then sends new messages containing the new algorithms 
and keys. The server responds by sending a Change Cipher 
Suite Message back with the new keys and algorithms. The 
handshake is then complete.
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Related tools
SSLdump
SSLdump is an SSL/TLS network protocol analyzer which 
identifies TCP connections on the chosen network interface 
and attempts to interpret them as SSL/TLS traffic. When it 
identifies SSL/TLS traffic it decodes the records and displays 
them in a textual form to stdout. If given the cryptographic 
keys involved it can be used to decrypt the traffic passing 
through.

SSLsniffer
SSL Sniffer provides similar functionality as SSLDump with 
the exception that it can act as a SSLv3/TLS and SSLv2 
proxy server. The issue with these sorts of tools is two-fold, 
they don’t provide any security analysis and further they are 
protocol specific. I should consider talking about frameworks 
and development in PHP as well.
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