
Volume : 2 | Issue : 2 | february 2013 ISSN - 2250-1991

58 X PARIPEX - INDIAN JOURNAL OF RESEARCH

Research PaperResearch Paper

t
* Department Of Computer Science & I.T., Shree M & N Virani Science College, Rajkot – 360 002

t ** Head, Department of Computer Science,J. H. Bhalodia Women's College, Rajkot - 360 002

 An Investigation Into the Field of

Cryptography and Cryptographic Algorithm

Protocols

*Pratik A Vanjara **Dr. Kishor Atkotiya

ABSTRACT

The field of Information Security and the subfield of cryptographic Algorithm protocols are both vast and continually evolving
and expanding fields. The use of cryptographic protocols as a means to provide security to web servers and services at the
transport layer, by providing both Encryption and authentication to data transfer, has become increasingly popular. I intend To
discuss the need for research into cryptography and to look at existing cryptographic Algorithms, cryptographic protocols and
related concepts. Finally I intend to look at some related work in detecting encrypted applications.

Computer Science

Introduction
This paper introduces and defines concepts relating to cryp-

tography, cryptographic algorithm protocols, issues relating
to cryptography and the development of software frame-

works. Cryptography is the discipline, art and science of
ensuring that messages are secure from possible “attacks”,
whether these “attacks” be eavesdropping, impersonation
or corruption. Cryptography provides security through a
number of mathematical transformations that can be proven
to be mathematically secure provided some optimum con-

ditions. We however need to cognizant that cryptography
on its own is insufficient to ensure a high level of security
within an organization, that is to say that cryptography is not
the silver bullet to solve all information security issues and
should be used in conjunction with good security practices.
Cryptography, like the Information Security field itself, is an
incredibly broad field involving many existing disciplines
such as abstract algebra to provide mathematical proofs
for the guaranteed correctness of an algorithm, statistics for
analysis of cryptographic algorithms and quantum physics
for quantum based random number generation for quantum
cryptography. In this literature review I intend to discuss
some cryptographic principles, cryptographic algorithms
and the related processing and security costs of employing
these algorithms.

Cryptographic algorithm protocols are a vital component of
Information Security as a means of securing modern net-
works against would-be attackers by providing data integrity,
encryption and authentication to network traffic at the trans-

port layer. Sensitive information, such as banking details,
that transverses networks will most likely do so through an
encrypted tunnel provided by the cryptographic algorithm
protocol; it is thus imperative that both the protocol itself is
secure and the applications use of the protocol is correct and
sensible. A recent paper by Lee et al. shows that in a study of
over 19000 web servers, 98.36% of the servers provided sup-

port for TLS and 97.92% provided support for SSLv3.0 and
85.37% provided support for SSLv2.0. These statistics serve
to show the prevalence of SSL/TLS and the need to support
these protocols.

Cryptography
Cryptography is a common component of any Information Se-

curity infrastructure; whether it before the encryption of large
files for secure long term storage or ensuring that communi-
cation lines are safe for the transfer of confidential informa-

tion. In this section I discuss two basic schemes ofCryptog-

raphy, symmetric cryptography and public key cryptography,

also outlining cryptographic Hash functions.

Symmetric Cryptography
Symmetric cryptography, also known as secret key cryptog-

raphy, has been in use since ancient times and has a wide
variety of different implementations ranging from simple
substitution ciphers such as Caesars Cipher to complex and
supposedly “mathematically unbreakable” algorithms such as
AES. Symmetric key encryption makes use of a single key
that must be kept secret, this key is used for both the encryp-

tion and decryption of messages to be sent or stored. I will
outline some of these functions, how they work and the rela-

tive amount of work required to perform each.

The Data Encryption Standard (DES)
The Data Encryption Standard was developed by IBM and
was selected in 1976 as an official

Federal Information Processing Standard for the United
States. The original DES algorithm used a 64-bit key, of which
8-bits are used for parity and the remaining 56-bits are used
to encrypt the plain-text. The required computations for brute
forcing a DES key would be 255 operations, given a 64-bit
plain-text and 64-bit DES key. While the DES algorithm itself
is considered to be resistant to cryptanalysis, the actual keys
used for encryption are considered to be fairly weak. The
DES algorithm consists of three phases.

Phase 1
The first 64-bits of plain-text, which we will call collectively,
x, run through an Initial Permutation function, which we
shall denote as IP, returning 64-bits of output, which we
will call x0. We can mathematically represent this as x0 =
IP(x): The output is separated into equal length sections,
obviously consisting of 32-bits each. We will represent this
separation as L0R0, where L0 represents the first 32-bits
and R0 represents the remaining 32-bits. Further we de-

fine an inverse function of the Initial Permutation function,
which we call IIP.

Phase 2
The output then undergoes 16 repetitions of a computation
that is key dependent using some cipher function, which we
shall call f, making use of a key scheduling function which we
shall call KS. A key scheduler calculates all the sub-keys for
each round or iteration. The output of each iteration or round
can be represented as xi = LiRi with 1 ≤ i ≤ 16 with Li = Ri - 1
and Ri = Li f(Ri – 1,Ki). The Ki’s are 48-bit blocks that can be
derived from the original 56-bit String using KS.

Volume : 2 | Issue : 2 | february 2013 ISSN - 2250-1991

PARIPEX - INDIAN JOURNAL OF RESEARCH X 59

Phase 3
In the final phase, IP is applied to x16to give another 64-bit ci-
pher block which we will call C, i.e. C = IIP(x16) = IIP(R16L16).
We note the inverse property applies, that is IIP(IP(x)) = x.

The Cryptographic Hash function, f
Firstly, this function will expand the Ri’s from their 32-bit block
to a 48-bit block through an expansion permutation. Essen-

tially this function increases the bit length by reusing some of
the bits in the R’is, and also re-ordering them making use of
a lookup table. We then exclusive-or this output together with
Ki. This result is then broken up in 8 blocks of 6-bits each.
These 6-bit blocks are then passed through an S-box giving
an output of 4-bits. The S-box takes the first bit and the last bit
of the input forming a 2-bit binary number. The base10 value
of this 2-bit number is used to select a row. The remaining in-

ner 4-bits are used to select a column number. These row and
column values are used to index a value from the S-box. The
4-bit output of each of these 8 boxes is then concatenated to
yield a 32-bit output which is finally given to the permutation
function P which gives a result of 32-bits.

Key Scheduling
The key scheduling function, KS, is used to make the 48-bit
Ki’s from the original 56-bit key. We note that while DES keys
are 64-bit, only 56-bits are actually used to seed the random
functions as 8-bits are used for error checking. Every 8th bit
(i.e 8th, 16, 24 ... 64) is used for parity. The key scheduling
functions consist of two permutation functions, PC1and PC2,
where PC stands for

Permutation Choice. To select the Ki’s we apply the following
algorithm. Given a 64-bit key K, we discard the 8- bits used for
parity and apply PC1 to the remainder of the key. This can be
represented as PC1(K) = C0D0 where C0 represents the first
28-bits and D0 represents the remainder. PC itself has two
components, with the first half determining Ci and the second
half determining Di. To calculate the individual CiDi we apply
a LSi function, which represents the number of left cylindrical
shifts, this is a value which is either 1 or 2, by which Ci or Di
is to be shifted. That is Ci = LSi(Ci - 1) and Di = LSi(Di - 1).

The Li function is yet another look up table function. The bits of
Ci and Di are then concatenated together and PC2 is applied
to the output of the concatenation, that is Ki = PC2(Ci;Di). For
decryption the same key is used, but the order of functions
applied is reversed.

AES
The AES accepted candidate, Rijndael, was designed by John
Diemen and Vincent Rijmen from Belgium and was published
in 1998, it is an iterated block cipher allowing for variable
key length and allows for a choice from a number of different
block size. Rijndael supports block sizes of 128-bits, 192-bits
and 256-bits. Rijndael is byte orientated, compared to the bit
orientated nature of DES. The number of rounds or iterations
applied is dependent on the sizes of the block and the key
used. For example if the block size is 128-bits and if we let m
be the size of key and r the number of rounds is given by r =
k/32+6. At the start a 128-bit block of plain-text is used as the
initial state. This initial state will be passed through a number
of key-dependent transformations, finally returning a 128-bit
block of plain-text. A state is treated as a 4x4 matrix, where
Ai;j will represent a single byte with 0 ≤ i; j ≤ 3, i referring to the
rows and j referring to the columns. For example A0;0 is the
first byte and A1;0 is the 5th byte. Rijndael makes use of four
basics operators to allow for transformation from one state,
say A = (Ai;j), to another state, say. The set of operators used
by Rijndael include the following four operators.

Operator 1 : Byte Substitution
This is a non-linear permutation that operates on each byte in the
current state independently, allowing for parallelism. In this phase
we take 8-bytes of the 16-byte phase a multiply them an 8 x 8
matrix, i.e. matrix multiplication of an 8 x 8 matrix by a 8x1 column
vector resulting in a 8x1 column vector. This can be efficiently
implemented by making use of a 256-bit lookup table or an

S-box
Operator 2 : Shift Row
This is a cyclic shift of the bytes in a state. his could be repre-

sented as say Bi;j = Ai;(j+1)mod4.

The first row will undergo no changes, owever the second row
will shift one column, the third row shifts two columns and the
third row will shift three columns

Operator 3 : Mix column
Each of the columns Ai undergoes a linear transformation. A
transformation is applied to a column at a time and is equiva-

lent to multiplying the columns contents by a 4 x 4 matrix, that
is matrix multiplication of a 4 x 4 matrix with a 4 x 1 column
matrix containing the columns values

Operator 4 : Round Key Addition
For every round a round key, RK, is generated from the ci-
pher key via the key scheduling function. The round key is the
same length as the encryption block and are represented in a
4 x 4 matrix, similar to how the plain-text is represented. We
then perform exclusive or the round key with the current state

Cryptographic Algorithm Protocols
We may define a protocol as a series of steps taken in order
to achieve some goal. In the case of Cryptographic algorithm
protocols, the goal is to allow for the secure communication of
parties by agreeing upon some standards that are to be used
to encrypt/decrypt the messages sent.

Architecture of TLS/SSL
It is important to understand the underlying architecture for
each of cryptographic protocols. We will consider the archi-
tecture of TLS focusing solely on the Handshake Phase, as it
is the most Significant to the development of the framework.
Firstly, we consider some of the goals of SSL/TLS as these
goals dictate the structure of TLS. TLS aims to provide a se-

cure connection between two parties with interoperability, ex-

tensibility, allowing for incorporation of encryption algorithms
or hashing functions and efficiency provided by caching . We
will consider basic architecture of TLS as it is very similar to
the architecture of SSL 3.0. For our purposes, we need only
to consider the Handshake phase of SSL

The Handshake
During this phase decisions are made as to what crypto-

graphic parameters are to be used for the actual TLS connec-

tion. This include deciding on the protocol version, selecting a
cipher suite and performing some secret key exchange. The
client sends a client hello message to the server. The server
then possibly responds with a server hello message. If there
is no response then a fatal error occurs and the connection is
closed. These hello messages establish: the protocol version
to be used, session ID, cipher suite to be used, compression
algorithm to use, clientHello.random and ServerHello.ran-

dom. The actual key exchange may consist of up to four mes-

sages containing: the Server Certificate, the Client Certificate,
the Server Key exchange and the Client Key exchange. If the
Server Certificate is to be authenticated it is sent after the hel-
lo messages phase. Following that the Server Key exchange
message may be sent if necessary. If the server passes the
authentication, it may request the

Client Certificate (if the client has one and if it is required by
the cipher suite). The server then sends a Hello Done mes-

sage back to the client indicating the end of the Hello Message
part of the handshake is complete. The server then waits for
a for a client response. If the certificate request message was
sent then the client needs to respond with a certificate. The
client will then send its Client Key exchange message with the
contents dependent on the public key encryption algorithm
chosen. After the exchanges have taken place a Change Ci-
pher Suite Message is sent from the client to server. The cli-
ent then sends new messages containing the new algorithms
and keys. The server responds by sending a Change Cipher
Suite Message back with the new keys and algorithms. The
handshake is then complete.

Volume : 2 | Issue : 2 | february 2013 ISSN - 2250-1991

60 X PARIPEX - INDIAN JOURNAL OF RESEARCH

Related tools
SSLdump
SSLdump is an SSL/TLS network protocol analyzer which
identifies TCP connections on the chosen network interface
and attempts to interpret them as SSL/TLS traffic. When it
identifies SSL/TLS traffic it decodes the records and displays
them in a textual form to stdout. If given the cryptographic
keys involved it can be used to decrypt the traffic passing
through.

SSLsniffer
SSL Sniffer provides similar functionality as SSLDump with
the exception that it can act as a SSLv3/TLS and SSLv2
proxy server. The issue with these sorts of tools is two-fold,
they don’t provide any security analysis and further they are
protocol specific. I should consider talking about frameworks
and development in PHP as well.

REFERENCES

[1] IEEE standard 802.15.4. IEEE Computer Society, October 2003. | [2] S. Biswas and R. Morris. Opportunistic routing in multi-hop Cryptography Algorithm. In Proceed-

ings of the ACM SIGCOMM ’05 Conference, Philadelphia, Pennsylvania, August 2005. | [3] R. Braden, T. Faber, and M. Handley. From protocol stack to protocol heap:
role-based algorithm. SIGCOMM Comput. Commun. Rev., 33(1):17–22, 2003. ISSN: 0146-4833 | [4] M. Buettner, G. V. Yee, E. Anderson, and R. Han. X-mac: a short
preamble mac protocol for duty-cycled cryptography algorithm. In | SenSys ’06: | [5] K. K. Chang and D. Gay. Language support for interoperable algorithm. In Proceed-

ings of the 2005 workshop on Software and compilers for embedded systems, | [6] J. I. Choi, J. W. Lee, M. Wachs, and P. Levis. Opening the sensornet black box. In
Proceedings of the International Workshop on Cryptography Algorithms, Massachusetts, USA, April 2007. | [7] D. D. Clark, J. Wroclawski, K. R. Sollins, and R. Braden.
Tussle in cyberspace: defining tomorrow’s internet. IEEE/ACM Trans. | [8] Arch Rock Corporation. A sensor network architecture for the ip enterprise. In Proceedings
of the 6th international conference on Information processing in sensor networks, demo session, Cambridge, | Massachusetts, USA, 2007. | [9] J. Crowcroft, S. Hand,
R. Mortier, T. Roscoe, and A. Warfield. Plutarch: an argument for network pluralism. In Proceedings of the ACM SIGCOMM workshop on Future directions in network
architecture, Karlsruhe, Germany, 2003.

