
Volume : 2 | Issue : 2 | february 2013 ISSN - 2250-1991

PARIPEX - INDIAN JOURNAL OF RESEARCH X 119

Research PaperResearch Paper

t
*,** M.Tech (C.S.E) VCE (AICTE), Hyderabad, India

Ensuring Availability and Integrity of Data

Storage in Cloud Computing

*K. Sunitha ** V. Tejaswini ***S.K. Prashanth

Engineering

ABSTRACT

Cloud storage is a cloud computing model in which data is stored on remote servers accessed from the Internet. Eventhough

there is a benefit of accessing the data from the remote servers there raises a security problem. In order to overcome the
problem, we proposed a efficient and effective verification scheme to ensure the integrity and availability of the data using
homomorphic token and distributed erasure coded data. Considering data are dynamic in nature, then it further supports
dynamic operations including such as modify, update, insert and append. This paper highlights the Fermat Number Transform
based Reed-Solomon erasure code to achieve the availability of data and drastically reduce the computation time and
overhead.

Keywords: Data integrity, Data availability, Cloud computing, Data dynamics

t *** Prof. CSE, VCE (AICTE), Hyderabad India

1. Introduction
Cloud computing is an Internet-based computing and use of
computer technology which provides access resources as a
service such as storage, network, server and processors etc.
By moving data into the cloud offers great ease to users. In
general data center in cloud holds information that users have
store on their computers. The security concerns arises be-
cause the outsource data is used by the user.

In order to achieve the security assurance of cloud data avail-
ability and integrity efficient and effective methods are used.
Still, the fact those users no longer have local copy of data
in the cloud prohibits the direct adoption of traditional crypto-
graphic primitives for the purpose of data integrity protection.
For this reason, the verification of cloud storage integrity must
be conducted without explicit knowledge of the whole data
files [3], [4], [5]. We considering, cloud data is dynamic in data
storage i.e. the data stored in the cloud supports dynamic op-
erations like insertion, deletion, appending and modification.
This dynamic feature into the cloud gives the storage correct-
ness assurance.

Ensuring of remote data integrity has been highlighted by
different system and security models. Eventhough, after ap-
plying these techniques to multiple servers could be straight
forward and all are focusing on static data.

Recently, Wang et al [16] proposed a Toward Secure and
Dependable Storage Services in Cloud Computing to ensure
the availability and integrity of outsourced data in cloud using
reed-solomon code. However, their scheme is not more ef-
ficient, because they are using Vandermonde Reed-Solomon
erasure code for data availability. This code takes long time
for encoding the file, which is inefficient.

In this paper, we propose an effective and efficient distrib-
uted storage verification scheme with explicit dynamic data
support to ensure the integrity and availability of users out-
sourced data in the cloud server. We rely on Fermat Number
Transform (FNT) based Reed-Solomon erasure code in the
file distribution preparation instead of Vandermonde Reed-
Solomon code to provide redundancies and guarantee the
data availability against Byzantine servers. This construction
significantly reduces the computation time and storage over-

head as compared to the traditional distribution techniques.

2. Problem Formulation and System Model
2.1 System Model
The cloud storage service architecture is illustrated in network
representations as follows in Fig. 1. Three different network
entities can be recognized as follows:

User: Who have data to be stored in the cloud and rely on the
cloud for data storage computation, can be either enterprise
or individual customers.

Cloud Server (CS): an entity, which is managed by cloud ser-
vice provider (CSP), who has significant resources and build-
ing and managing distributed cloud storage servers.

Third-Party Auditor: TPA has an optional, who has expertise
and capabilities that users do not have and is trusted to as-
sess the cloud storage security and behalf of the users upon
request.

Figure 1 Cloud computing basic architecture

In the cloud storage, a user stores his data into a set of cloud
servers using CSP, which are running in a Fig.1. The user
interacts with the cloud servers via CSP to access or retrieve
his data. But in some cases, the user may need to perform
block level operations on his data. In case that users do not

Volume : 2 | Issue : 2 | february 2013 ISSN - 2250-1991

120 X PARIPEX - INDIAN JOURNAL OF RESEARCH

have the time, they can delegate the data auditing tasks to an
optional trusted TPA choices.

In order to ensure the security and dependability of the Cloud
Server a special entity is used, which is referred to as an ad-
versary model. The adversary is interested in continuously
corrupting the users data which is stored on individual serv-
ers. Once a server is comprised,an adversary can corrupt the
original data files by modify or introducing its own fraudulent
data in order to prevent the original data from being retrieved
by the user.

2.2 Design Goals
The main goals for integrity and of this paper are;

1. The challenge-response protocol will provide the localiza-
tion of data error.

2. We propose an efficient method for encoding the data file
to be transferred and stored in the Cloud.

3. Finally, we propose an efficient data recovery method in
order to retrieval the of lost data in Cloud.

4. Dynamic data support which is to maintain the same level
of storage correctness assurance even if users modify,
insert, delete or append their data files in the cloud.

2.3 Preliminaries and notations

• D-the data file to be stored in cloud, we assume that D
is denoted as matrix of ‘m’ equal sized data blocks each

consisting of ‘l’ data blocks, these all data blocks belongs

Galois Field GF (2w) where w=8 or 16.

• A-the generator distribution matrix used for Fermat
Reed-Solomon encoding.

• G-is the encoded file matrix, which contains both data
and parity blocks, where each consisting of ‘l’ blocks.

• fkey(.)-pseudo Random Function (PRF) indexed on some

key, which is defined as f : {0,1}* ×key-GF (2w).

• πkey(.)-
pseudo Random Permutation (PRP) indexed under

key, which is defined as π : {0,1}log2(l) × key –{0,1}lo2(l) .

3. Proposed Protocol
To provide availability and integrity of data storage in
cloud computing, we propose a new data verification
protocol. It is designed based on Fermat number trans-
form and spot checking using hash values. Our protocol
consists of four phases: 1) File Encoding 2) Token Com-
putation 3) Data Integrity Checking and Dynamic Data
Operations.

3.1 File Encoding
To attain availability of data stored in cloud we are using
FNT based Reed-Solomon erasure code. Generally eras-
ures are used to recover the data loss in distributed storage
systems. This is based on FNT support practical encoding
and decoding algorithms with complexity)log(nnΟ ,
where n is the number of symbols of a codeword. Particu-
lary, using this approach we are benified by the connec-
tion of erasure codes with FNT allow to reuse the optimized
software and hardware implementations developed for the
applications.

Assume that q is a prime number, the values 0,1…….,q<1
form a finite field where addition and product are processed
modulo q. This finite field is known as the Galois field GF(q).
In finite fields the order of a number is defined as the lowest
power of the number which is equals 1 modulo q. An element
of the Galois field is called a primitive root of the field if its
order is q-1. Consider example, 3 is a primitive root in Galois
field GF(65537), because 1365536 ≡ mod 65537 and for each
0<i<65536, 13 ≠i mod 65537.

 The principles of the Fourier transform can be extensive to
these finite fields, as introduced by Pollard[]. Let r be an ele-
ment of order n-1 in the field. In this case, the Discrete Fourier
transform (DFT), which take a vector

a = (0a ,…, 1−na) of size n as input in GF(q), returns

jA
=

ij
n

i

ira∑
−

=

1

0
, 0 qnnj ≤−≤≤ ,1

where A is a vector of size n. In the same way, the inverse

DFT (DFT
1−

) can be defined as:

nnjrA
n

a ij
n

i

ij ,10,
1 1

0

−≤≤×= −
−

=
∑ <q.

In order to process the DFT, Fermat Number Transform is
used in finite fields. FNT is the equivalent of the FFT algo-
rithm on Fermat fields [10]. By using divide and conquer ap-
proach, the complexity of the FNT of size n and its inverse

1−FNT , reduces the process of the DFT to O(n log n). The
FNT can also be represented by a n× n square matrix. This
matrix is a special case of a Vandermonde matrix on special
set

12 ,......,,,1 −nrrr , where r is of order n-1. Since these
values are pairwise dissimilar, the matrix is invertible. The first
k rows of this FNT matrix form the generator matrix of a Reed-
Solomon code.

 The representation of the FNT comes from polynomials and
we represents a vector of size n, we define a(x) as the poly-
nomial as

∑
−

=

1

0

n

i

i

i xa …………… (1)

Thus FNT can be viewed as the evaluation of a(x) on the
points which form a geometric sequence.

3.2 Token Computation

Algorithm 1: Token Pre-Computation
1: Procedure
2: Choose parameters l, n and functions f and π;
3: Choose the number of t verification tokens;
4: Choose the number of r indices per verification;
5: Generate random challenge key PRFk and master per-

mutation key PRPk
6: for vector G(j), j←1,n do
7: for round i←1, t do
8: Derive)(ifx

SRFki = and)(ify
SRPki = from kSRP

9: Compute).()(

1

)(jr

q

q

i

j

i zxV ∑ =
= where

10: end for
11: end for
12: Store all the Vi’s locally.
13: end procedure

3.3 Data Integrity Checking

Algorithm 2: Challenge-Response Protocol
1: procedure CHALLENGE (i)
2: user regenerate)(ifx

PRFki = and
)(ify

PRPki = from kPRP;
3: user sends {xi, yi} to all the cloud servers;
4: server computeshhhghfdhhhhhhhhhhhhhhhhhh

5: server return to)(j

iR to users;
6: if)),(),(()()1()()1(

1

k

i

m

i

m

i RRARR +==⋅
7: Accept and ready for next challenge
8: else
9: for j←1, k do
10: if)!()()(j

i

j

i VR = then
11 return server j is malfunctioning
12: end if
13: end for
14: end if
15: end procedure

,10),(,,......,,,1 12 −≤≤=− njraArrr j

j

n

}1|)]([

).({

)()(

)(

1

)(

kjqGzwhere

zxR

iy

jj

jr

q

q

i

j

i

≤≤=

=∑ =

π

Volume : 2 | Issue : 2 | february 2013 ISSN - 2250-1991

PARIPEX - INDIAN JOURNAL OF RESEARCH X 121

4. Security Analysis
 In this we present a formal security analysis for our proposed
scheme depending on the detection probability of data cor-
ruptions.

Eventually, integrity of all transferred data will be confirmed
with high probability. This optional threshold may not be ap-
propriate in certain situations such as highly critical informa-
tion, but may provide a performance boost from any typical
applications relying on outsourced data storage.

Assume that client sets a threshold ‘t’ between 0 and 1 .
Whether the individual query is authenticated or not should
be decided randomly. It’s important to randomize the authen-
tication of queries, or a malicious storage server could predict
which queries would be authenticated and provide in correct
responses only on unauthenticated queries. The probability
of the client detecting that there is atleast one piece of invalid
data which can be calculated as P = 1 − (1 − c ∗ t) n, where n
is the number of queries that have been performed.

5. Performance Analysis
We now analyze the performance of our auditing scheme.
We focus on the encoding cost of file in file preparation as
well as the token compute. Our experiment is conducted on
a system with an Intel Core 2 processor running at 1.86 GHz,
4GB RAM, 7,200 RPM and Western Digital 520 GB Serial
ATA drive. Algorithms are implemented using open-source
erasure coding library Jerasure.

5.1 File Encoding
As discussed earlier, in file encoding includes the generation
of parity vectors. We consider two sets of different param-
eters for the FNT based (m,n) Reed-Solomon encoding, both
of which work over GF(216). Fig. 2 shows the total cost for
encoding of different file sizes in GB file before outsourcing
using Vandermonde Reed-Solomon code and FNT based
Reed-Solomon Code. From the figure we can say that FNT
based reed-solomon code is faster than Vandermonde Reed-
Solomon

Compared to the existing work, it can be shown from Fig. 4
that the file enocding of our scheme is more efficient. This is
because in vandermonde Reed-Solomon code[14] performs
then multiplications based on Galios Field(GF) whereas our
scheme performs FNT based Reed Solomon Eraser code.

Fig. 2 Total cost for encoding the different file sizes in Vander-
monde Reed-Solomon erasure code and FNT based Reed-
Solomon erasure code.

1 2 3 4 5
0

100

200

300

400

500

600

700

File Size(GB)

T
im

e
(m

s
)

Vandermonde Reed-Solomon Code

FNT based Reed-Solomon Code

5.2 Token Pre-Comutation
In this section, we measure the time for computing tokens in
token computation phase. Here, we are using Universal Hash
Function (UHF) over the Galios Field(GF). Table 1 shows that
computation cost of tokens.

File Size Proposed Scheme Existing Scheme

1GB 203.23s 252.21s

2GB 246.63s 294.13s

3GB 283.80s 332.28s

4GB 325.76s 374.43s

5GB 366.32s 415.09s

Table 1. Computation times for different file sizes of
above two schemes.

6. Related Work
Juels and Kaliski Jr. [3] describes “proof of retrievability”
(POR) model for ensuring the remote data integrity. Their
scheme combines spot-checking and error-correcting code to
ensure both possession and retrievability of files on service
systems. Bowers et al. [11] proposed an better framework for
POR protocols that generalizes both Juels and Shacham’s
work. Later in their consequent work, Bowers et al. [14] ex-
tended POR model to distributed systems. Even though, all
these schemes are focusing on static data. In their subse-
quent work, Ateniese et al. [7] described a PDP scheme that
uses only symmetric key-based cryptography with lower over-
head than previous schemes and allows for block operations.
However, their scheme focuses on single server scenario and
does not provide data availability guarantee against server
failures. The explicit support of data dynamics has been fur-
ther studied in the two recent work [8] and [9]. Schwarz and
Miller [15] proposed to ensure static file integrity across multi-
ple distributed servers.

 Very recently, Wang et al. [16] proposed a flexible distributed
storage integrity auditing mechanism, utilizing the homomor-
phic token and distributed erasure-code data. The proposed
design allows users to audit the cloud storage with very trivial
communication, computation cost and support of dynamic
data operations.

7. Conclusion
In this paper we examine the problem of data security in
cloud data storage. The integrity and availability of cloud stor-
age service is achieved by flexible distributed scheme that
will supports dynamic operations including block update,
delete,append and insert. In this paper we rely on FNT based
Reed Solomon erasure correcting code in the file distribution
preparation to provide redundancy parity vectors and guar-
antee the data dependability. Our scheme also achieves the
integration of storage correctness insurance and data error
localization through utilizing the homomorphic token with dis-
tributed verification of erasure coded data. Clearly, by observ-
ing the performance results our proposed scheme is more
efficient against byzantine failures and drastically reduce the
computation time and overhead compared to the Reed Solo-
mon erasure coded data.

Volume : 2 | Issue : 2 | february 2013 ISSN - 2250-1991

122 X PARIPEX - INDIAN JOURNAL OF RESEARCH

REFERENCES

[1] C. Wang, Q. Wang, K. Ren, and W. Lou, “Ensuring Data Storage Security in Cloud Computing,” Proc. 17th Int’l Workshop Quality of Service (IWQoS ’09), pp. 1-9,
July 2009. | [2] K. Ren, C. Wang, and Q. Wang, “Security Challenges for the Public Cloud,” IEEE Internet Computing, vol. 16, no. 1, pp. 69-73, 2012. | [3] A. Juels
and B.S. Kaliski Jr., “PORs: Proofs of Retrievability for Large Files,” Proc. 14th ACM Conf. Computer and Comm. Security (CCS ’07), pp. 584-597, Oct. 2007. | [4] G.
Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and D. Song, “Provable Data Possession at Untrusted Stores,” Proc. 14th ACM Conf. Computer
and Comm. Security (CCS’07), pp. 598-609, Oct. 2007. | [5] M.A. Shah, M. Baker, J.C. Mogul, and R. Swaminathan, “Auditing to Keep Online Storage Services Honest,”
Proc. 11th USENIX Workshop Hot Topics in Operating Systems (HotOS ’07), pp. 1-6, 2007. | [6] M.A. Shah, R. Swaminathan, and M. Baker, “Privacy-Preserving Audit
and Extraction of Digital Contents,” Cryptology ePrint Archive, Report 2008/186, http://eprint.iacr.org, 2008. | [7] G. Ateniese, R.D. Pietro, L.V. Mancini, and G. Tsudik,
“Scalable and Efficient Provable Data Possession,” Proc. Fourth Int’l Conf. Security and Privacy in Comm. Netowrks (Secure Comm ’08), pp. 1-10, 2008. | [8] Q. Wang,
C. Wang, J. Li, K. Ren, and W. Lou, “Enabling Public Verifiability and Data Dynamics for Storage Security in Cloud Computing,” Proc. 14th European Conf. Research in
Computer Security (ESORICS ’09), pp. 355-370, 2009. | [9] C. Erway, A. Kupcu, C. Papamanthou, and R. Tamassia, “Dynamic Provable Data Possession,” Proc. 16th
ACM Conf. Computer and Comm. Security (CCS ’09), pp. 213-222, 2009. | [10] H. Shacham and B. Waters, “Compact Proofs of Retrievability,” Proc. 14th Int’l Conf.
Theory and Application of Cryptology and Information Security: Advances in Cryptology (Asiacrypt ’08), pp. 90-107, 2008. | [11] K.D. Bowers, A. Juels, and A. Oprea,
“Proofs of Retrievability: Theory and Implementation,” Proc. ACM Workshop Cloud Computing Security (CCSW ’09), pp. 43-54, 2009. | [12] Q. Wang, C. Wang, K. Ren,
W. Lou, and J. Li, “Enabling Public Auditability and Data Dynamics for Storage Security in Cloud Computing,” IEEE Trans. Parallel and Distributed Systems, vol. 22, no.
5, pp. 847-859, 2011. | [13] C. Wang, S.S.M. Chow, Q. Wang, K. Ren, and W. Lou, “Privacy-Preserving Public Auditing for Secure Cloud Storage,” IEEE Trans. Comput-
ers, preprint, 2012, doi:10.1109/TC.2011.245. | [14] K.D. Bowers, A. Juels, and A. Oprea, “HAIL: A High-Availability and Integrity Layer for Cloud Storage,” Proc. ACM
Conf. Computer and Comm. Security (CCS ’09), pp. 187-198, 2009. | [15] T. Schwarz and E.L. Miller, “Store, Forget, and Check: Using Algebraic Signatures to Check
Remotely Administered Storage,” Proc. IEEE Int’l Conf. Distributed Computing Systems (ICDCS ’06), pp. 12-12, 2006. | [16] Cong Wang, Qian Wang, Kui Ren, Ning
Cao and Wenjing Lou, “Toward Secure and Dependable Storage Services in Cloud Computing,” IEEE Tranctions on services computing, vol 5, No. 2, April-June 2012 |
[17] J. Hendricks, G. Ganger, and M. Reiter, “Verifying Distributed Erasure-Coded Data,” Proc. 26th ACM Symp. Principles of Distributed Computing, pp. 139-146, 2007.

