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ABSTRACT

Cloud storage is a cloud computing model in which data is stored on remote servers accessed from the Internet. Eventhough 

there is a benefit of accessing the data from the remote servers there raises a security problem. In order to overcome the 
problem, we proposed a efficient and effective verification scheme to ensure the integrity and availability of the data using 
homomorphic token and distributed erasure coded data. Considering data are dynamic in nature, then it further supports 
dynamic operations including such as modify, update, insert and append. This paper highlights the Fermat Number Transform 
based Reed-Solomon erasure code to achieve the availability of data and drastically reduce the computation time and 
overhead.
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1. Introduction 
Cloud computing is an Internet-based computing and use of 
computer technology which provides access resources as a 
service such as storage, network, server and processors etc. 
By moving data into the cloud offers great ease to users. In 
general data center in cloud holds information that users have 
store on their computers. The security concerns arises be-
cause the outsource data is used by the user.

In order to achieve the security assurance of cloud data avail-
ability and integrity efficient and effective methods are used. 
Still, the fact those users no longer have local copy of data 
in the cloud prohibits the direct adoption of traditional crypto-
graphic primitives for the purpose of data integrity protection. 
For this reason, the verification of cloud storage integrity must 
be conducted without explicit knowledge of the whole data 
files [3], [4], [5]. We considering, cloud data is dynamic in data 
storage i.e. the data stored in the cloud supports dynamic op-
erations like insertion, deletion, appending and modification. 
This dynamic feature into the cloud gives the storage correct-
ness assurance. 

Ensuring of remote data integrity has been highlighted by 
different system and security models. Eventhough, after ap-
plying these techniques to multiple servers could be straight 
forward and all are focusing on static data.

Recently, Wang et al [16] proposed a Toward Secure and 
Dependable Storage Services in Cloud Computing to ensure 
the availability and integrity of outsourced data in cloud using 
reed-solomon code. However, their scheme is not more ef-
ficient, because they are using Vandermonde Reed-Solomon 
erasure code for data availability. This code takes long time 
for encoding the file, which is inefficient. 

In this paper, we propose an effective and efficient distrib-
uted storage verification scheme with explicit dynamic data 
support to ensure the integrity and availability of users out-
sourced data in the cloud server. We rely on Fermat Number 
Transform (FNT) based Reed-Solomon erasure code in the 
file distribution preparation instead of Vandermonde Reed-
Solomon code to provide redundancies and guarantee the 
data availability against Byzantine servers. This construction 
significantly reduces the computation time and storage over-

head as compared to the traditional distribution techniques.

2. Problem Formulation and System Model
2.1 System Model
The cloud storage service architecture is illustrated in network 
representations as follows in Fig. 1. Three different network 
entities can be recognized as follows:

User: Who have data to be stored in the cloud and rely on the 
cloud for data storage computation, can be either enterprise 
or individual customers.

Cloud Server (CS): an entity, which is managed by cloud ser-
vice provider (CSP), who has significant resources and build-
ing and managing distributed cloud storage servers. 

Third-Party Auditor: TPA has an optional, who has expertise 
and capabilities that users do not have and is trusted to as-
sess the cloud storage security and behalf of the users upon 
request.

Figure 1 Cloud computing basic architecture

In the cloud storage, a user stores his data into a set of cloud 
servers using CSP, which are running in a Fig.1. The user 
interacts with the cloud servers via CSP to access or retrieve 
his data. But in some cases, the user may need to perform 
block level operations on his data. In case that users do not 
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have the time, they can delegate the data auditing tasks to an 
optional trusted TPA choices. 

In order to ensure the security and dependability of the Cloud 
Server a special entity is used, which is referred to as an ad-
versary model. The adversary is interested in continuously 
corrupting the users data which is stored on individual serv-
ers. Once a server is comprised,an adversary can corrupt the 
original data files by modify or introducing its own fraudulent 
data in order to prevent the original data from being retrieved 
by the user.

2.2 Design Goals
The main goals for integrity and of this paper are;

1. The challenge-response protocol will provide the localiza-
tion of data error.

2. We propose an efficient method for encoding the data file 
to be transferred and stored in the Cloud.

3. Finally, we propose an efficient data recovery method in 
order to retrieval the of lost data in Cloud.

4. Dynamic data support which is to maintain the same level 
of storage correctness assurance even if users modify, 
insert, delete or append their data files in the cloud.

2.3 Preliminaries and notations

• D-the data file to be stored in cloud, we assume that D 
is denoted as matrix of ‘m’ equal sized data blocks each 

consisting of ‘l’ data blocks, these all data blocks belongs 

Galois Field GF (2w) where w=8 or 16. 

• A-the generator distribution matrix used for Fermat 
Reed-Solomon encoding.

• G-is the encoded file matrix, which contains both data 
and parity blocks, where each consisting of ‘l’ blocks.

• fkey(.)-pseudo Random Function (PRF) indexed on some 

key, which is defined as f : {0,1}* ×key-GF (2w).

• πkey(.)-
pseudo Random Permutation (PRP) indexed under 

key, which is defined as π : {0,1}log2(l) × key –{0,1}lo2(l) .

3. Proposed Protocol
To provide availability and integrity of data storage in 
cloud computing, we propose a new data verification 
protocol. It is designed based on Fermat number trans-
form and spot checking using hash values. Our protocol 
consists of four phases: 1) File Encoding 2) Token Com-
putation 3) Data Integrity Checking and Dynamic Data 
Operations.

3.1 File Encoding
To attain availability of data stored in cloud we are using 
FNT based Reed-Solomon erasure code. Generally eras-
ures are used to recover the data loss in distributed storage 
systems. This is based on FNT support practical encoding 
and decoding algorithms with complexity )log( nnΟ , 
where n is the number of symbols of a codeword. Particu-
lary, using this approach we are benified by the connec-
tion of erasure codes with FNT allow to reuse the optimized 
software and hardware implementations developed for the 
applications.

Assume that q is a prime number, the values 0,1…….,q<1 
form a finite field where addition and product are processed 
modulo q. This finite field is known as the Galois field GF(q). 
In finite fields the order of a number is defined as the lowest 
power of the number which is equals 1 modulo q. An element 
of the Galois field is called a primitive root of the field if its 
order is q-1. Consider example, 3 is a primitive root in Galois 
field GF(65537), because 1365536 ≡ mod 65537 and for each 
0<i<65536, 13 ≠i mod 65537.

 The principles of the Fourier transform can be extensive to 
these finite fields, as introduced by Pollard[ ]. Let r be an ele-
ment of order n-1 in the field. In this case, the Discrete Fourier 
transform (DFT), which take a vector

a = ( 0a ,…, 1−na ) of size n as input in GF(q), returns
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In order to process the DFT, Fermat Number Transform is 
used in finite fields. FNT is the equivalent of the FFT algo-
rithm on Fermat fields [10]. By using divide and conquer ap-
proach, the complexity of the FNT of size n and its inverse 

1−FNT , reduces the process of the DFT to O(n log n). The 
FNT can also be represented by a n× n square matrix. This 
matrix is a special case of a Vandermonde matrix on special 
set 

12 ,......,,,1 −nrrr , where r is of order n-1. Since these 
values are pairwise dissimilar, the matrix is invertible. The first 
k rows of this FNT matrix form the generator matrix of a Reed-
Solomon code.

 The representation of the FNT comes from polynomials and 
we represents a vector of size n, we define a(x) as the poly-
nomial as
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Thus FNT can be viewed as the evaluation of a(x) on the 
points which form a geometric sequence.

3.2 Token Computation

Algorithm 1: Token Pre-Computation
1:  Procedure
2:  Choose parameters l, n and functions f and π;
3:  Choose the number of t verification tokens;
4:  Choose the number of r indices per verification;
5:  Generate random challenge key PRFk  and master per-

mutation key PRPk
6:  for vector G(j), j←1,n do
7:  for round i←1, t do
8: Derive )(ifx

SRFki =  and )(ify
SRPki =  from kSRP

9: Compute ).( )(
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10: end for
11: end for
12:  Store all the Vi’s locally.
13:  end procedure

3.3 Data Integrity Checking

Algorithm 2: Challenge-Response Protocol
1:  procedure CHALLENGE (i)
2:  user regenerate )(ifx

PRFki =  and 
)(ify

PRPki =  from kPRP;
3:  user sends {xi, yi} to all the cloud servers;
4:  server computeshhhghfdhhhhhhhhhhhhhhhhhh
 

5:  server return to )( j

iR  to users;
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7:  Accept and ready for next challenge
8:  else 
9:  for j←1, k do
10: if )!( )()( j

i

j

i VR = then
11  return server j is malfunctioning
12: end if
13: end for
14: end if
15: end procedure
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4. Security Analysis
 In this we present a formal security analysis for our proposed 
scheme depending on the detection probability of data cor-
ruptions.

Eventually, integrity of all transferred data will be confirmed 
with high probability. This optional threshold may not be ap-
propriate in certain situations such as highly critical informa-
tion, but may provide a performance boost from any typical 
applications relying on outsourced data storage.

Assume that client sets a threshold ‘t’ between 0 and 1 . 
Whether the individual query is authenticated or not should 
be decided randomly. It’s important to randomize the authen-
tication of queries, or a malicious storage server could predict 
which queries would be authenticated and provide in correct 
responses only on unauthenticated queries. The probability 
of the client detecting that there is atleast one piece of invalid 
data which can be calculated as P = 1 − (1 − c ∗ t) n, where n 
is the number of queries that have been performed.

5. Performance Analysis
We now analyze the performance of our auditing scheme. 
We focus on the encoding cost of file in file preparation as 
well as the token compute. Our experiment is conducted on 
a system with an Intel Core 2 processor running at 1.86 GHz, 
4GB RAM, 7,200 RPM and Western Digital 520 GB Serial 
ATA drive. Algorithms are implemented using open-source 
erasure coding library Jerasure.

5.1 File Encoding
As discussed earlier, in file encoding includes the generation 
of parity vectors. We consider two sets of different param-
eters for the FNT based (m,n) Reed-Solomon encoding, both 
of which work over GF(216). Fig. 2 shows the total cost for 
encoding of different file sizes in GB file before outsourcing 
using Vandermonde Reed-Solomon code and FNT based 
Reed-Solomon Code. From the figure we can say that FNT 
based reed-solomon code is faster than Vandermonde Reed-
Solomon 

Compared to the existing work, it can be shown from Fig. 4 
that the file enocding of our scheme is more efficient. This is 
because in vandermonde Reed-Solomon code[14] performs 
then multiplications based on Galios Field(GF) whereas our 
scheme performs FNT based Reed Solomon Eraser code.

Fig. 2 Total cost for encoding the different file sizes in Vander-
monde Reed-Solomon erasure code and FNT based Reed-
Solomon erasure code.
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5.2 Token Pre-Comutation
In this section, we measure the time for computing tokens in 
token computation phase. Here, we are using Universal Hash 
Function (UHF) over the Galios Field(GF). Table 1 shows that 
computation cost of tokens.

File Size Proposed Scheme Existing Scheme

1GB 203.23s 252.21s

2GB 246.63s 294.13s

3GB 283.80s 332.28s

4GB 325.76s 374.43s

5GB 366.32s 415.09s

Table 1. Computation times for different file sizes of 
above two schemes.

6. Related Work
Juels and Kaliski Jr. [3] describes “proof of retrievability” 
(POR) model for ensuring the remote data integrity. Their 
scheme combines spot-checking and error-correcting code to 
ensure both possession and retrievability of files on service 
systems. Bowers et al. [11] proposed an better framework for 
POR protocols that generalizes both Juels and Shacham’s 
work. Later in their consequent work, Bowers et al. [14] ex-
tended POR model to distributed systems. Even though, all 
these schemes are focusing on static data. In their subse-
quent work, Ateniese et al. [7] described a PDP scheme that 
uses only symmetric key-based cryptography with lower over-
head than previous schemes and allows for block operations. 
However, their scheme focuses on single server scenario and 
does not provide data availability guarantee against server 
failures. The explicit support of data dynamics has been fur-
ther studied in the two recent work [8] and [9]. Schwarz and 
Miller [15] proposed to ensure static file integrity across multi-
ple distributed servers. 

 Very recently, Wang et al. [16] proposed a flexible distributed 
storage integrity auditing mechanism, utilizing the homomor-
phic token and distributed erasure-code data. The proposed 
design allows users to audit the cloud storage with very trivial 
communication, computation cost and support of dynamic 
data operations.

7. Conclusion
In this paper we examine the problem of data security in 
cloud data storage. The integrity and availability of cloud stor-
age service is achieved by flexible distributed scheme that 
will supports dynamic operations including block update, 
delete,append and insert. In this paper we rely on FNT based 
Reed Solomon erasure correcting code in the file distribution 
preparation to provide redundancy parity vectors and guar-
antee the data dependability. Our scheme also achieves the 
integration of storage correctness insurance and data error 
localization through utilizing the homomorphic token with dis-
tributed verification of erasure coded data. Clearly, by observ-
ing the performance results our proposed scheme is more 
efficient against byzantine failures and drastically reduce the 
computation time and overhead compared to the Reed Solo-
mon erasure coded data. 
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