
Volume : 2 | Issue : 2 | february 2013 ISSN - 2250-1991

108 X PARIPEX - INDIAN JOURNAL OF RESEARCH

Research PaperResearch Paper

Hardware Implementation of Advanced

Cryptographic Hash Functionon FPGAS

* Ms. Atuliika Shukla ** Prof. Sumit Sharma

*** Prof.Ravi Mohan

Engineering

ABSTRACT

A cryptographic hash function is a deterministic procedure whose input is an arbitrary block of data and output is a fixed-size bit
string, which is known as the (Cryptographic) hash value. Cryptographic hash functions are the workhorses of cryptography,

and can be found everywhere. Originally created to make digital signatures more efficient, they are now used to secure the
very fundamentals of our information infrastructure, message authentication codes (MACs), [1] secure web connections,

encryption key management.Here is an algorithm which is implemented on FPGA. An essential part of this work is hardware

performance evaluation of the hash function algorithms. In this work we present efficient hardware implementations and
hardware performance evaluations of the algorithm. We implemented and investigated the performance of efficient hardware
architectures on latest Xilinx FPGAs. we conclude the results in the form of chip area consumption, throughput and throughput
per area on most recently released devices from Xilinx on which implementations have not been reported yet. We have
achieved substantial improvements in implementation results from all of the previously reported work. This work serves as

performance investigation of the given algorithm on most up-to-date FPGAs.

Keywords: Hash Function, SHA-3, Skein, Threefish, FPGA

* EC Deptt. Shri Ram Institute of Technology, Jabalpur (M.P) INDIA

** HOD,EC Deptt. Shri Ram Institute of Technology, Jabalpur (M.P) INDIA

*** HOD, ME/M.Tech EC Deptt. Shri Ram Institute of Technology,Jabalpur(M.P)INDIA

INTRODUCTION
Over the last three decades, the use of information technol-
ogy in our everyday lives has increased dramatically. Due to
this, the growth rate for e-commerce has been double-digit
over the last decade, with an estimated $301 billion expected
online retail sales in 2012 [1]. This extreme increase in online
trading has lead to a rise in online attacks to obtain money
through deception or other illegal means. Due to this, compa-
nies and consumers using e-commerce have become more
aware of security risks exchanging information over such an
open medium. This increased knowledge has lead to several
third parties setting up secure areas for credit card and bank
account details to be shared with minimal risk of the numbers
being obtained and used fraudulently When shopping on The
Internet, a connection is set up between the computer being
used and the company server. This is done using a “Chal-
lenge and Response” through the Transport Layer Security
(TLS), [10].

Challenge and Response uses a mixture of symmetric block
ciphers and Message Authentication Codes (MAC). The MAC
is constructed using a Hash Function.

A cryptographic hash function is a deterministic procedure
whose input is an arbitrary block of data and output is a fixed-
size bit string, which is known as the (Cryptographic) hash
value. Cryptographic hash functions are the workhorses of
cryptography, and can be found everywhere.[2] Originally cre-
ated to make digital signatures more efficient, they are now
used to secure the very fundamentals of our information in-
frastructure, message authentication codes (MACs), secure
web connections, encryption key management, virus- and
malware-scanning, and almost every cryptographic protocol
in current use.[3] Without hash functions, the Internet would
simply not work.

OVERVIEW
We have designed a family of cryptographic hash functions.
The proposed design has three different internal state sizes:
256, 512, and 1024 bits. Each of these state sizes can sup-
port any output size. The proposed design is built from three
components, Threefish tweakable block cipher, Unique Block
Iteration (UBI) and Optional argument system. The tweakable
block cipher makes every instance of compression unique by
hashing configuration data along with input message. The
compression function of the proposed design consists of a
layer of non-linear MIX operations and permutation. MIX op-
eration consists of addition modulo 264, rotation and XOR op-
eration on a pair of 64-bit words. The Threefish compression
function is used in UBI chaining mode to compress arbitrary
length of input data to fixed size hash digest.

RELATED WORK
There are two main streams of hardware implementations of
algorithms on FPGA and ASIC platforms: high speed imple-
mentations and compact implementations.[4] Various groups
around the world are working on hardware performance eval-
uation of cryptographic hash functions using these two types
of implementations. Most of the reported work is focused on
high speed architectures as it provides a direct snapshot of
the basic operations’ cost for a given algorithm. The relevant
category for our work is high speed implementations on FP-
GAs.

People discussed and reported their results for various ar-
chitectures using pipelining, folding and loop unrolling ap-
proaches. For performance comparison, we quote here the
results of architecture based on basic iterative approach. We
have been calculated specifications based on the reported
clock frequencies and number of clock cycles consumed for
the proposed design.[5]

Volume : 2 | Issue : 2 | february 2013 ISSN - 2250-1991

PARIPEX - INDIAN JOURNAL OF RESEARCH X 109

ENVIRONMENT
It effects the implementations in terms of the level of exper-
tise, language, coding techniques, design methodology, and
development tools. We implemented the design using VHDL
as the language and using Xilinx’s ISE 13.1/Altera’s Quartus-
II as the development tool [6].

IMPLEMENTATION METHODOLOGY
We have implemented the 512-bit variants of the proposed
design. Our design is fully autonomous with complete I/O
interfaces.[7] We targeted for efficient implementations but
keeping in mind the fair hardware performance comparison
the proposed design. We assure this approach by catering for
the following constraints:
The proposed Design is built from these three components:
Threefish. Threefish is the tweakable block cipher at the core
of design, defined with a 512-bit block size.

Unique Block Iteration (UBI). UBI is a chaining mode that
uses Threefish to build a compression function that maps an
arbitrary input size to a fixed output size.

Optional Argument System. This allows design to support a
variety of optional features without imposing any overhead
on implementations and applications that do not use the fea-
tures.

Dividing up our design in this way makes it easier to under-
stand, analyze, and prove properties about. The underlying
Threefish algorithm draws upon years of knowledge of block
cipher design and analysis.[11] UBI is provably secure and
can be used with any tweakable cipher. The optional argu-
ment system allows design to be tailored for different pur-
poses. These three components are independent, and are
usable on their own, but it’s their combination that provides
real advantages.

Datapath Architectures for propose design
The datapath implemented for the proposed design shown
in Fig.(a). Add_Subkey module consists of 8, 64-bit adders,
implemented using fast carry chain logic available in Xilinx
FPGAs. The Threefish compression function of

 (a) Data path of the design

(c) Selection between two rotation constants in MIX operation
proposed design is partially implemented using 4 unrolled
rounds. These 4 rounds are then iteratively used to complete
72 rounds of compression function. The novel idea in imple-

mentation of these 4 unrolled rounds is that, we do not need
separate MIX modules and multiplexers to select between
different rotation constants in second step of MIX operation.
We have efficiently implemented second step in MIX module
using a LUT4 primitive depicted in Fig.(c).

The select bit s, selects between two rotated instances of
x1 according to round number to XOR with y0. For first four
rounds s is zero and upper half rows of rotation constants’ ta-
ble are used for respective MIX modules. For next four rounds
s will be 1 and lower half rows of rotation constants’ table are
used for respective MIX modules. For example x1<< 46 will
be selected and XORed with s0 in first round and x1<< 39
will be selected and XORed with y0 in fifth round. Hardware
architecture of key schedule module is shown in Fig.(b). The
extended key K8 is obtained by XORing the input 64-bit key
words (K0…..K7) and constant C240. The extended teak t2 is
obtained by XORing the two input 64-bit tweak word (t0 and
t1). The extended key and tweak words are then loaded into
the circular shift registers K (576 bit) and t (192 bit). These two
registers are clocked and rotated once for each subkey. Key
Schedule module generates subkeys on every falling edge of
clock pulse. Add_Subkey module gives output on the rising
edge of each clock pulse. Next subkey is available on falling
edge of the same clock pulse. In this way one clock cycle is
required to complete four rounds, subkey addition and subkey
generation. Therefore to complete 72 rounds and 19 subkey
addition of design, 19 clock cycles will be required. The next
chaining hash value will be available after 19 clock cycles.

A Full Specification of proposed design
Type Values
The Design has many possible parameters. Each parameter,
whether optional or mandatory, has its own unique type iden-
tifier and value. Type values are in the range 0..63. Design
processes the parameters in numerically increasing order of
type value, as listed in

Table 1

Symbol Value Description
Tkey) 0 Key (for MAC and KDF)
Tcfg 4 Con_guration block
Tprs 8 Personalization string
TPK 12 Public key (for digital signature hashing)
Tkdf 16 Key identi_er (for KDF)

Tnon 20 Nonce (for stream cipher or randomized
hashing)

Tmsg 48 Message
Tout 63 Output

Table 1 : Values for the type field.

The Configuration String
The configuration string contains the following data:
 A schema identifier. This is a literal constant. If some

other standardization body wants to define an entirely dif-
ferent function based on UBI and Threefish, it can chose
a different schema identifier and ensure that its function
is different from Skein.

 A version number, to support future extensions.
 No: the output length of the computation, in bits. This en-

sures that two Skein computations
 that di_er only in the number of output bits give unrelated

results.
 Yl: Tree leaf size encoding. Set to 0 if tree hashing is not

used.
 Yf : Tree fan-out encoding. Set to 0 if tree hashing is not

used.
 Ym: Max tree height. Set to 0 if tree hashing is not used.

The Output Function
The function Output(G;No) takes the following parameters:
G the chaining value.

No the number of output bits required. and produces No bits
of output.

The result consists of the leading [No/8] bytes of

Volume : 2 | Issue : 2 | february 2013 ISSN - 2250-1991

110 X PARIPEX - INDIAN JOURNAL OF RESEARCH

O = UBI(G,ToBytes(0, 8), Tout2120)jj

UBI(G;ToBytes(1; 8); Tout2120)jj

UBI(G;ToBytes(2; 8); Tout2120)jj

If No mod 8 = 0 the output is an integral number of bytes.

If No mod 8 ≠ 0 the last byte is only partially used.

Using fuction as Simple Hashing
A simple hash computation has the following inputs:[8]
Nb The internal state size, in bytes. Must be 32, 64,
No The output size, in bits.
M The message to be hashed, a string of up to 299- 8 bits
(296- 1 bytes).

Let C be the con_guration string defined as with

Yl = Yf = Ym = 0
We define:
K’= 0Nb a string of Nb zero bytes

G0 := UBI(K, C, Tcfg2120)
G1 := UBI(G0, M, Tmsg2120)
H := Output(G1, No)
where H is the result of the hash.

In its full general form, a design computation has the follow-
ing inputs:
Nb The internal state size, in bytes. Must be 32, 64, or 128
No The output size, in bits.
K A key of Nk bytes. Set to the empty string (Nk = 0) if no key
is desired.
Yl Tree hash leaf size encoding.
Yf Tree hash fan-out encoding.
Ym Maximum tree height.
L List of t tuples (Ti;Mi) where Ti is a type value and Mi is a
string of bits encoded in a string of bytes.

We have:
L := (T0;M0),…….. (Tt-1,Mt-1)
We require that Tcfg < T0, Ti < Ti+1 for all i, and
 Tt-1 < Tout. An empty list L is allowed. Each
Mi can be at most 299- 8 bits (= 296 - 1 bytes) long.

The first step is to process the key. If Nk = 0, the starting value
consists of all zeroes.
 K’ = 0Nb

If Nk 6= 0 we compress the key using UBI to get our starting
value
 K’ = UBI(0Nb , K; Tkey2120)
Let C be the con_guration string de_ned in Section 3.5.2. We
compute:
G0 := UBI(K’,C, Tcfg2120)
The parameters are then processed in order:
Gi+1 := UBI(Gi,Mi, Ti2120) for i = 0………… t -1

with one exception: if the tree parameters Yl, Yf , and Ym are
not all zero, then an input tuple with Ti = Tmsg is processed
,rather than with straight UBI [9].

And the final result is given by:
H := Output(Gt;No)

Tree Processing
The message input (type Tmsg) is special and can be pro-
cessed as a tree. Figure 10 gives an example of how tree
hashing works. Tree processing is controlled by the three
tree parameters Yl, Yf , and Ym in the con_g block. Normally
(for non-tree hashing), these are all zero. If they are not all
zero, the normal UBI function that processes the Tmsg field
is replaced by a tree hashing construction, this is a drop-in
replacement of that one UBI function; all other parts of Skein
are unchanged.The tree hashing uses the following input pa-
rameters:.

An overview of tree hashing.
Yl The leaf size encoding. The size of each leaf of the tree is
Nb2Yt bytes with Yl ≥1.
Yf The fan-out encoding. The fan-out of a tree node is 2Yf
with Yf ≥1.
Ym The maximum tree height; Ym ≥2. (If the height of
the tree is not limited, this parameter is set to 255.)
G The input chaining value. This is the G input of the UBI call
that the tree hashingreplaces, and the output of the previous
UBI function in the Skein computation.
M The message data.

We de_ne the leaf size Nl := Nb2Yt and the
node size Nn := Nb2Yt

The message data M is a string of bits encoded in a string
of bytes. We _rst split M into one or more message blocks
M0,0,M0,1;M0,2; :::;M0,k-1. If M is the empty string, the split
results in a single message block M0;0 that is itself the empty
bit string. If M is not the empty string, then blocks M0;0; : :
: ;M0;k-2 all contain 8Nl bits and block M0;k-1 contains be-
tween 1 and 8Nl bits. We now define the first level of tree
hashing

Note that in the tweak, the tree level field is set to one and the
Position field is given an offset equal to the starting offset (in
bytes) of the message block.

The rest of the tree is de_ned iteratively. For any level l = 1,
2,…….. we use the following rules.
If Ml has length Nb then the result Go is defined by Go := Ml.
If Ml is longer than Nb bytes and l = Ym -1 then we have al-
most reached the maximum tree
height. The result is defined by:

If neither of these conditions holds, we create the next tree
level. We split Ml into blocks Ml;0, Ml;1………Ml;k-1 where all
blocks but the last one are Nn bytes long and the last block is
between Nb and Nn bytes long. We then define

and apply the above rules to Ml+1 again.

The result Go is the output of the tree hashing. It becomes
the chaining input to the next UBI function in design. (Cur-
rently there are no types defined between Tmsg and Tout, so
Go becomes the chaining input to the output transformation.)
As Yf ≥1 each node of the tree has a fan-out of at least 2, so
the height of the tree grows logarithmically in the size of the
message input.

Security Claims
The design has been developed to be secure for a wide
range of applications, including but not limited to digital sig-
natures, key derivation, pseudorandom number generation,
and stream cipher usage. Design supports personalized and
randomized hashing. Under a secret key, Design can be used
for message authentication and as a pseudorandom function.
[12].

Volume : 2 | Issue : 2 | february 2013 ISSN - 2250-1991

PARIPEX - INDIAN JOURNAL OF RESEARCH X 111

Below, we write n for the state size, and m for the minimum of
state and output size. We claimthe following levels of security
against standard attacks

 First pre-image resistance up to 2m.
 Second pre-image resistance up to 2m.
 Collision resistance up to 2m/2.
 Resistance against r-collisions up to roughly min (2n/2 ,

2(n-1)m/r.) (An r collision consists of r different messages
M1, . . . , Mr with

 H(M1) =………… = H(Mr).)

Summary
In this paper, an architecture with multi-mode operation and
the VLSI implementation of the hash function is proposed.
The system can support efficiently the security needs, with
higher offered security level compared with the previous ex-
isting standard hash functions. Furthermore, this proposed
system could substitute the implementations of the existing
hash standard, in all types of applications, such as digital

signatures, message authentication codes and random num-
ber generators, with better achieved performance and higher
supported security level. The introduced system performs
efficiently for the three SHA-2 standard functions (256, 384
and 512). The proposed system covers less area resources
compared with previous published implementations [13], and
achieves higher operation frequency compared with other
related works [13]. In some cases, it also achieves higher
performance at about 277 and 417% than other hardware
integrations [14].

As we have shown, it is feasible in fact, quite easy to create
pseudo-near-collisions and pseudo near-second-preimages
for up to eight rounds of any variant of the design. Here, \
near” means Hamming-distance 2. Using techniques, one
can push this from eight to twelve rounds, at the cost of some
significant but feasible amount of work. Assuming close to 2n
units of work, it may even be possible to find pseudo-near-
second-preimages for up to sixteen rounds of the design-n
compression function, for either n = 256, n = 512, or n = 1024.

REFERENCES

Books: | Agarwal, S.(1999). Genocide of women in Hinduism. Jabalpur, India: Sudarshan Books. | Ambedkar, B.R. (1987). Writings and Speeches. Volume 3. Bombay:
Government of Maharashtra. | Bandhu., Rao, (Eds.). (2001). Dalit Women’s cry for Liberation- My Rights Are Rising like the Sun, will you deny this sunrise -Caste and
Gender, Kali for Women. New Delhi. | Chakravati, V., & Rao. (Eds.,) (2003). Reconceptualising Gender ; Phule, Brahmanisam, and Brahminial Patriarchy. New Delhi. |
GangaNatha, Jha. (1920). Manu Smriti, The laws of Manu with the Bhasya of Medhatithi. Calcutta,India: University of Calcutta. | Jogdand. (2005) Dalit Women Issues
and Perspectives. NewDelhi,: Gyan Publication. | Sainath, P. Rao., (2003),Unmusical chairs in Gender and Caste, Kali for women. New Delhi. | Shah, Ghanshym., Desh-
pande, Sathish., Thorat ,Sukhadeo., Mander., Harsha. (2000). Untouchability in Rural India. New Delhi: Action Aid. | Sen, Amartya. (2000). Social Exclusio: Concept,
Application, and Scrutiny, Manila. Philippines: Asian Development Bank. | Thorat, Sukhadeo. Caste, Social Exclusion and Poverty Linkages – Concept, Measurement
and Empirical Evidence.New Delhi.: IIDS, 2010. | Working Papers: | Narula, Smitha. (2008). Equal by Law, Unequal by Caste: The “Untouchable” Condition In Critical
Race Perspective. Center For Human Rights And Global Justice Working Paper, NYU School of Law. | Ruth, Manorama. (2006) The situation of Dalit women – formerly
known as untouchables/scheduled castes, Presented before the Committee on Development of the European Parliament by, National Convenor of National Federation
of Dalit Women, 18 December 2006. | Tirmare, P. (2004) Violation of Human Rights of dalit Women: Issues and Facts. Paper presented in the seminar on ‘Gender and
Human Rights’ organised by College of Social Work, Nanded Maharashtra. | “Unheard Voices: Dalit Women.”, An alternative report, for the 15th – 19th periodic report
on India, submitted by the Government of Republic of India, for the 70th session of Committee on the Elimination of Racial Discrimination, Geneva,: Switzerland, Jan,
2007. | Articles: | Guru, Gopal. (1995). Dalit Women Talk Differently. Economic and Political Weekly, Vol. 30, No. 41/42, pp. 2548-2550, Oct. 14-21. | |

