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ABSTRACT

A cryptographic hash function is a deterministic procedure whose input is an arbitrary block of data and output is a fixed-size bit 
string, which is known as the (Cryptographic) hash value. Cryptographic hash functions are the workhorses of cryptography, 

and can be found everywhere. Originally created to make digital signatures more efficient, they are now used to secure the 
very fundamentals of our information infrastructure, message authentication codes (MACs), [1] secure web connections, 

encryption key management.Here is an algorithm which is implemented on FPGA. An essential part of this work is hardware 

performance evaluation of the hash function algorithms. In this work  we present efficient hardware implementations and 
hardware performance evaluations of the algorithm. We implemented and investigated the performance of efficient hardware 
architectures on latest Xilinx FPGAs. we conclude the  results in the form of chip area consumption, throughput and throughput 
per area on most recently released devices from Xilinx on which implementations have not been reported yet. We have 
achieved substantial improvements in implementation results from all of the previously reported work. This work serves as 

performance investigation of the given algorithm on most up-to-date FPGAs.
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INTRODUCTION
Over the last three decades, the use of information technol-
ogy in our everyday lives has increased dramatically. Due to 
this, the growth rate for e-commerce has been double-digit 
over the last decade, with an estimated $301 billion expected 
online retail sales in 2012 [1]. This extreme increase in online 
trading has lead to a rise in online attacks to obtain money 
through deception or other illegal means. Due to this, compa-
nies and consumers using e-commerce have become more 
aware of security risks exchanging information over such an 
open medium. This increased knowledge has lead to several 
third parties setting up secure areas for credit card and bank 
account details to be shared with minimal risk of the numbers 
being obtained and used fraudulently When shopping on The 
Internet, a connection is set up between the computer being 
used and the company server. This is done using a “Chal-
lenge and Response” through the Transport Layer Security 
(TLS), [10].

Challenge and Response uses a mixture of symmetric block 
ciphers and Message Authentication Codes (MAC). The MAC 
is constructed using a Hash Function.

A cryptographic hash function is a deterministic procedure 
whose input is an arbitrary block of data and output is a fixed-
size bit string, which is known as the (Cryptographic) hash 
value. Cryptographic hash functions are the workhorses of 
cryptography, and can be found everywhere.[2] Originally cre-
ated to make digital signatures more efficient, they are now 
used to secure the very fundamentals of our information in-
frastructure, message authentication codes (MACs), secure 
web connections, encryption key management, virus- and 
malware-scanning, and almost every cryptographic protocol 
in current use.[3] Without hash functions, the Internet would 
simply not work.

OVERVIEW
We have designed a family of cryptographic hash functions. 
The proposed design has three different internal state sizes: 
256, 512, and 1024 bits. Each of these state sizes can sup-
port any output size. The proposed design is built from three 
components, Threefish tweakable block cipher, Unique Block 
Iteration (UBI) and Optional argument system. The tweakable 
block cipher makes every instance of compression unique by 
hashing configuration data along with input message. The 
compression function of the proposed design consists of a 
layer of non-linear MIX operations and permutation. MIX op-
eration consists of addition modulo 264, rotation and XOR op-
eration on a pair of 64-bit words. The Threefish compression 
function is used in UBI chaining mode to compress arbitrary 
length of input data to fixed size hash digest.

RELATED WORK
There are two main streams of hardware implementations of 
algorithms on FPGA and ASIC platforms: high speed imple-
mentations and compact implementations.[4] Various groups 
around the world are working on hardware performance eval-
uation of cryptographic hash functions using these two types 
of implementations. Most of the reported work is focused on 
high speed architectures as it provides a direct snapshot of 
the basic operations’ cost for a given algorithm. The relevant 
category for our work is high speed implementations on FP-
GAs.

People discussed and reported their results for various ar-
chitectures using pipelining, folding and loop unrolling ap-
proaches. For performance comparison, we quote here the 
results of architecture based on basic iterative approach. We 
have been calculated specifications based on the reported 
clock frequencies and number of clock cycles consumed for 
the proposed design.[5]
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ENVIRONMENT
It effects the implementations in terms of the level of exper-
tise, language, coding techniques, design methodology, and 
development tools. We implemented the design using VHDL 
as the language and using Xilinx’s ISE 13.1/Altera’s Quartus-
II as the development tool [6].

IMPLEMENTATION METHODOLOGY
We have implemented the 512-bit variants of the proposed 
design. Our design is fully autonomous with complete I/O 
interfaces.[7] We targeted for efficient implementations but 
keeping in mind the fair hardware performance comparison 
the proposed design. We assure this approach by catering for 
the following constraints:
The proposed Design is built from these three components:
Threefish. Threefish is the tweakable block cipher at the core 
of design, defined with a 512-bit block size.

Unique Block Iteration (UBI). UBI is a chaining mode that 
uses Threefish to build a compression function that maps an 
arbitrary input size to a fixed output size.

Optional Argument System. This allows design to support a 
variety of optional features without imposing any overhead 
on implementations and applications that do not use the fea-
tures.

Dividing up our design in this way makes it easier to under-
stand, analyze, and prove properties about. The underlying 
Threefish algorithm draws upon years of knowledge of block 
cipher design and analysis.[11] UBI is provably secure and 
can be used with any tweakable cipher. The optional argu-
ment system allows design to be tailored for different pur-
poses. These three components are independent, and are 
usable on their own, but it’s their combination that provides 
real advantages.

Datapath Architectures for propose design 
The datapath implemented for the proposed design shown 
in Fig.(a). Add_Subkey module consists of 8, 64-bit adders, 
implemented using fast carry chain logic available in Xilinx 
FPGAs. The Threefish compression function of 

     (a) Data path of the design 

(c) Selection between two rotation constants in MIX operation
proposed design is partially implemented using 4 unrolled 
rounds. These 4 rounds are then iteratively used to complete 
72 rounds of compression function. The novel idea in imple-

mentation of these 4 unrolled rounds is that, we do not need 
separate MIX modules and multiplexers to select between 
different rotation constants in second step of MIX operation. 
We have efficiently implemented second step in MIX module 
using a LUT4 primitive depicted in Fig.(c).

The select bit s, selects between two rotated instances of 
x1 according to round number to XOR with y0. For first four 
rounds s is zero and upper half rows of rotation constants’ ta-
ble are used for respective MIX modules. For next four rounds 
s will be 1 and lower half rows of rotation constants’ table are 
used for respective MIX modules. For example x1<< 46 will 
be selected and XORed with s0 in first round and x1<< 39 
will be selected and XORed with y0 in fifth round. Hardware 
architecture of key schedule module is shown in Fig.(b). The 
extended key K8 is obtained by XORing the input 64-bit key 
words (K0…..K7) and constant C240. The extended teak t2 is 
obtained by XORing the two input 64-bit tweak word (t0 and 
t1). The extended key and tweak words are then loaded into 
the circular shift registers K (576 bit) and t (192 bit). These two 
registers are clocked and rotated once for each subkey. Key 
Schedule module generates subkeys on every falling edge of 
clock pulse. Add_Subkey module gives output on the rising 
edge of each clock pulse. Next subkey is available on falling 
edge of the same clock pulse. In this way one clock cycle is 
required to complete four rounds, subkey addition and subkey 
generation. Therefore to complete 72 rounds and 19 subkey 
addition of design, 19 clock cycles will be required. The next 
chaining hash value will be available after 19 clock cycles.

A Full Specification of proposed design
Type Values
The Design has many possible parameters. Each parameter, 
whether optional or mandatory, has its own unique type iden-
tifier and value. Type values are in the range 0..63. Design 
processes the parameters in numerically increasing order of 
type value, as listed in 

Table 1

Symbol Value Description
Tkey) 0 Key (for MAC and KDF)
Tcfg 4 Con_guration block
Tprs 8 Personalization string
TPK 12 Public key (for digital signature hashing)
Tkdf 16 Key identi_er (for KDF)

Tnon 20 Nonce (for stream cipher or randomized 
hashing)

Tmsg 48 Message
Tout 63 Output

Table 1 : Values for the type field.

The Configuration String
The configuration string contains the following data:
 A schema identifier. This is a literal constant. If some 

other standardization body wants to define an entirely dif-
ferent function based on UBI and Threefish, it can chose 
a different schema identifier and ensure that its function 
is different from Skein.

  A version number, to support future extensions.
  No: the output length of the computation, in bits. This en-

sures that two Skein computations
 that di_er only in the number of output bits give unrelated 

results.
  Yl: Tree leaf size encoding. Set to 0 if tree hashing is not 

used.
 Yf : Tree fan-out encoding. Set to 0 if tree hashing is not 

used.
  Ym: Max tree height. Set to 0 if tree hashing is not used.

The Output Function
The function Output(G;No) takes the following parameters:
G the chaining value.

No the number of output bits required. and produces No bits 
of output.

The result consists of the leading [No/8 ] bytes of
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O = UBI(G,ToBytes(0, 8), Tout2120)jj

UBI(G;ToBytes(1; 8); Tout2120)jj

UBI(G;ToBytes(2; 8); Tout2120)jj

If No mod 8 = 0 the output is an integral number of bytes. 

If No mod 8 ≠ 0 the last byte is only partially used.

Using fuction as Simple Hashing
A simple hash computation has the following inputs:[8]
Nb The internal state size, in bytes. Must be 32, 64, 
No The output size, in bits.
M  The message to be hashed, a string of up to 299- 8 bits 
(296- 1 bytes).

Let C be the con_guration string defined as with 

Yl = Yf = Ym = 0
We define:
K’= 0Nb a string of Nb zero bytes

G0 := UBI(K, C, Tcfg2120)
G1 := UBI(G0, M, Tmsg2120)
H := Output(G1, No)
where H is the result of the hash.

In its full general form, a design computation has the follow-
ing inputs:
Nb The internal state size, in bytes. Must be 32, 64, or 128
No The output size, in bits.
K A key of Nk bytes. Set to the empty string (Nk = 0) if no key 
is desired.
Yl Tree hash leaf size encoding.
Yf Tree hash fan-out encoding.
Ym Maximum tree height.
L List of t tuples (Ti;Mi) where Ti is a type value and Mi is a 
string of bits encoded in a string of bytes.

We have:
L := (T0;M0),…….. (Tt-1,Mt-1)
We require that Tcfg < T0, Ti < Ti+1 for all i, and
 Tt-1 < Tout. An empty list L is allowed. Each
Mi can be at most 299- 8 bits (= 296 - 1 bytes) long.

The first step is to process the key. If Nk = 0, the starting value 
consists of all zeroes.
    K’ = 0Nb

If Nk 6= 0 we compress the key using UBI to get our starting 
value
        K’ = UBI(0Nb , K; Tkey2120)
Let C be the con_guration string de_ned in Section 3.5.2. We 
compute:
G0 := UBI(K’,C, Tcfg2120)
The parameters are then processed in order:
Gi+1 := UBI(Gi,Mi, Ti2120) for i = 0………… t -1

with one exception: if the tree parameters Yl, Yf , and Ym are 
not all zero, then an input tuple with Ti = Tmsg is processed 
,rather than with straight UBI [9].

And the final result is given by:
H := Output(Gt;No)

Tree Processing
The message input (type Tmsg) is special and can be pro-
cessed as a tree. Figure 10 gives an example of how tree 
hashing works. Tree processing is controlled by the three 
tree parameters Yl, Yf , and Ym in the con_g block. Normally 
(for non-tree hashing), these are all zero. If they are not all 
zero, the normal UBI function that processes the Tmsg field 
is replaced by a tree hashing construction, this is a drop-in 
replacement of that one UBI function; all other parts of Skein 
are unchanged.The tree hashing uses the following input pa-
rameters:.

An overview of tree hashing.
Yl  The leaf size encoding. The size of each leaf of the tree is 
Nb2Yt bytes with Yl ≥1.
Yf  The fan-out encoding. The fan-out of a tree node is 2Yf 
with Yf ≥1.
Ym  The maximum tree height; Ym ≥2. (If the height of 
the tree is not limited, this parameter is set to 255.)
G  The input chaining value. This is the G input of the UBI call 
that the tree hashingreplaces, and the output of the previous 
UBI function in the Skein computation.
M  The message data.

We de_ne the leaf size Nl := Nb2Yt and the 
node size Nn := Nb2Yt

The message data M is a string of bits encoded in a string 
of bytes. We _rst split M into one or more message blocks 
M0,0,M0,1;M0,2; :::;M0,k-1. If M is the empty string, the split 
results in a single message block M0;0 that is itself the empty 
bit string. If M is not the empty string, then blocks M0;0; : : 
: ;M0;k-2 all contain 8Nl bits and block M0;k-1 contains be-
tween 1 and 8Nl bits. We now define the first level of tree 
hashing

Note that in the tweak, the tree level field is set to one and the 
Position field is given an offset equal to the starting offset (in 
bytes) of the message block.

The rest of the tree is de_ned iteratively. For any level l = 1, 
2,…….. we use the following rules.
If Ml has length Nb then the result Go is defined by Go := Ml.
If Ml is longer than Nb bytes and l = Ym -1 then we have al-
most reached the maximum tree
height. The result is defined by:

If neither of these conditions holds, we create the next tree 
level. We split Ml into blocks Ml;0, Ml;1………Ml;k-1 where all 
blocks but the last one are Nn bytes long and the last block is 
between Nb and Nn bytes long. We then define

and apply the above rules to Ml+1 again.

The result Go is the output of the tree hashing. It becomes 
the chaining input to the next UBI function in design. (Cur-
rently there are no types defined between Tmsg and Tout, so 
Go becomes the chaining input to the output transformation.) 
As Yf ≥1 each node of the tree has a fan-out of at least 2, so 
the height of the tree grows logarithmically in the size of the 
message input.

Security Claims
The design has been developed to be secure for a wide 
range of applications, including but not limited to digital sig-
natures, key derivation, pseudorandom number generation, 
and stream cipher usage. Design supports personalized and 
randomized hashing. Under a secret key, Design can be used 
for message authentication and as a pseudorandom function.
[12].
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Below, we write n for the state size, and m for the minimum of 
state and output size. We claimthe following levels of security 
against standard attacks

 First pre-image resistance up to 2m.
  Second pre-image resistance up to 2m.
  Collision resistance up to 2m/2.
  Resistance against r-collisions up to roughly min (2n/2 , 

2(n-1)m/r.) (An r collision consists of r different messages 
M1, . . . , Mr with 

 H(M1) =………… = H(Mr).)

Summary
In this paper, an architecture with multi-mode operation and 
the VLSI implementation of the hash function is proposed. 
The system can support efficiently the security needs, with 
higher offered security level compared with the previous ex-
isting standard hash functions. Furthermore, this proposed 
system could substitute the implementations of the existing 
hash standard, in all types of applications, such as digital 

signatures, message authentication codes and random num-
ber generators, with better achieved performance and higher 
supported security level. The introduced system performs 
efficiently for the three SHA-2 standard functions (256, 384 
and 512). The proposed system covers less area resources 
compared with previous published implementations [13], and 
achieves higher operation frequency compared with other 
related works [13]. In some cases, it also achieves higher 
performance at about 277 and 417% than other hardware 
integrations [14]. 

As we have shown, it is feasible in fact, quite easy to create 
pseudo-near-collisions and pseudo near-second-preimages 
for up to eight rounds of any variant of the design. Here, \
near” means Hamming-distance 2. Using techniques, one 
can push this from eight to twelve rounds, at the cost of some 
significant but feasible amount of work. Assuming close to 2n 
units of work, it may even be possible to find pseudo-near-
second-preimages for up to sixteen rounds of the design-n 
compression function, for either n = 256, n = 512, or n = 1024.
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