
Volume : 2 | Issue : 1 | January 2013 ISSN - 2250-1991

30 X PARIPEX - INDIAN JOURNAL OF RESEARCH

Research PaperResearch Paper

t
* Professor, Research Scholor of C.M.J. University Shilong, Meghalaya

t ** Research Guide in computer science, C.M.J. University ,Meghalaya

Efficient Black-Box Collision Search in
cryptanalysis

*Kalpesh R. Rakholiya ** Dr. Dhaval Kathiriya

Computer Science

ABSTRACT

The collision search problem is, given a function F with a finite range, to find distinct inputs x and x' such that F(x) equals F(x').
Collision search is an important tool in cryptanalysis, most notably for computing discrete logarithms, making meet-in-the-
middle attacks, or finding hash function collisions. After a brief review of historical results, this section describes the state-of
the-art serial and parallel methods for searching collisions.

Keywords: random, theorem, negligible memory, eliminate, asymptotically ,probability, meet-in-middle

Tails and Cycles
Let Fn denote the set of all functions from a domain D of size
n to a codomain of size n, with n finite. Let F be random ele-
ment of Fn (that is, a random mapping from and to n-element
sets). The range of F is expected to contain
distinct elements. Therefore , F is expected to have collisions
F(x)=F(x’),x ¹ x’. Efficient methods for finding such collision
exploit the structure of F as collection of cycles.

Consider the infinite sequence for some ar-
bitrary starting value .Because D is finite, this sequence
will eventually begin to cycle. Hence, there exist two small-
est integers (the tail length) and (the cycle length)
such that for every . Such a structure
then yields a collision at the point where the cycle begins:

.

The birthday paradox illustrates well the above structure: in a
sequence of random numbers in{1,…,n}, the expected num-
ber of draws before a number occurs twice is asymptotically

. This is because the expected values of the tail length
m and of the cycle length l sum to .
This value is sometimes called the rho length, because of the
rho shape of the sequence, as noticed by Pollard[1].

A trivial collision search algorithm repeats the following: pick
random x and x’ , return them as a collision if F(x) equals F(x’)
, otherwise continue the search. About n trials are required,
since x and x’ collide with probability . A less trivial algo-
rithm exploits the existence of cycles by storing a sequence

 , sort it and look for a collision. State-
of-the-art methods eliminate the large memory requirements
and the cost of sorting a large list. In the following we review
these methods , starting with explicit cycle-detection meth-
ods, then presenting modern techniques that tailored to su-
percomputers. Finally, we explain how to apply those meth-
ods to concrete cryptanalytic problems.

Cycle Detection Based Methods
The low-memory cycle-detection method of Floyd is at the base
of Pollard’s rho method for factoring and computing discrete
logarithms . It is based on the following observation from [2]:

Theorem 1 : For a periodic sequence x0,x1,x2,…, there
exists a unique i>0 such that xi=x2i and the smallest such

.

Based on Theorem 1 , Floyd’s method picks a starting
value and compares the values and

.The expected number of iterations before
reaching a match is [19] .

Floyd’s algorithm detects that the sequence has reached a
cycle , but does not give the values of l and m , nor a collision
for F. this can be done as follows, once xi = x2i is found: gen-
erate xj and , until finding at the first equal-
ity we have j=m. If none of the values equals xi then l=m.
If none on average evaluations of F. Finally, detecting
the cycle and locating the collision with the above method
costs

evaluations of F, and requires negligible memory (storage of
a few xi’s). Slightly more efficient variants of Floyd’s algorithm
were proposed by Brent [3] and Teske [4]. Sedgewick et al.
showed how to eliminate the redundant computations by us-
ing a small amount of memory [5], but their algorithm is not as
general as Floyd’s (in particular, it cannot be combined with
Pollard’s rho factoring method).

Parallel Search with Distinguished Points
A disadvantage of Floyd’s algorithm (and thus of Pollard’s rho
method) is that it cannot be parallelized efficiently: m proces-
sors don’t provide a 1/m reduction of complexity. This is be-
cause one has to wait for a given invocation of F to end before
the next can begin. Efficient parallelization of collision search
takes a different approach, by using the idea of distinguished
points, The idea of using distinguished points (i.e., points that
have some predefined easily checkable property, like having
ten leading zero bits) was proposed by Quisquater and De-
lescaille [6] for searching DES collisions, and earlier noted
by Rivest [7, p.100] in the context of Hellman’s time-memory
tradeoff. Below we describe a simple method for efficient par-
allelization of collision search using distinguished points, and
due to van Oorshot and Wiener [8].

Let m be the number of processors available, and consider
some easily checked property that a random point sat-
isfies with probability θ <1. To perform the search, each pro-
cessor

1. Selects a starting value x0 .
2. Computers , until a distinguished point

 is reached;

Volume : 2 | Issue : 1 | January 2013 ISSN - 2250-1991

PARIPEX - INDIAN JOURNAL OF RESEARCH X 31

3. Add xd (along with x0 and d) to a common list for all pro-
cessors;

4. Repeats the process.

The algorithm halts when a same distinguished point ap-
pears twice in the common list, which means that two dis-
tinct sequences (x0,…,xi) and lead to same value

(one should ensure that a same starting value is not
used twice). With high probability , one will easily deduce
a collision from these two sequences (if the first sequence
leads to the starting point of the second, then no collision
will be found).

The above algorithm runs in time about to lo-
cate a collision, hence parallelization provides a linear speed-
up of the search.

Application to Meet-in-the-Middle
Parallel collision search using distinguished points can be di-
rectly applied to find collisions for hash functions. It can also
be adapted to compute discrete logarithms in cyclic groups.
Here we show how it can be used to perform meet-in-the-
middle (MITM) attacks, which are used for computing preim-
ages of MD5 and HAVAL.

The problem considered is, given two functions F1 and F2 in
Fn , to find x and x’ (not necessarily distinct) such that F1(x)
equals F2(x’). A solution can be found by defining an easily
checked property P , and by considering the function

Under reasonable assumptions on F1 and F2 , and assum-
ing that a random x satisfies P with probability 1/2, a collision
F(x) = F(x’) will be useful as soon as x satisfies P but not x.
When the cost of computing F1 and F2 significantly differs
(for example if one of them represents a shortcut preimage
attack on some component), the property P can be adapted
to optimize the complexity of the attack, so that F1 is called
more often than F2.

Conclusion:
Note that the MITM problem considered here, and often en-
countered in cryptanalysis, differs from what is called MITM
in [8]. Indeed, the latter attack looks for a single “golden val-
ue”, and its complexity heavily depends on the domain size,
whereas in the former complexity only depends on the range
size. Example of applications of memory less MITM are our
attacks on the SHA-3 candidate MCSSHA-3 and on MD5.

REFERENCES

[1] John M. Pollard. Monte-Carlo methods for index computation mod p. Mathematics of Computation, 32(143), 1978. | [2] Donald E. Knuth. The Art of Computer Pro-
gramming. Addison-Wesley, second edition edition, 1981. | [3] Shi Bai and Richard P. Brent. On the efficiency of Pollard’s rho method for discrete logarithms. In CATS,
2008. | [4]Edlyn Teske. Speeding up Pollard’s rho method for computing discrete logarithms. In ANTS, 1998. | [5] Robert Sedgewick, Thomas G. Szymanski, and Andrew
Chi-Chih Yao. The complexity of finding cycles in periodic functions. SIAM Journal on Computing, 11(2), 1982. | [6] Jean-Jacques Quisquater and Jean-Paul Delescaille.
How easy is collision search? Application to DES (extended summary). In EUROCRYPT, 1989. | [7] Dorothy E. Robling Denning. Cryptography and Data Security.
Addison-Wesley, 1982. | [8]Paul C. van Oorschot and Michael J. Wiener. Parallel collision search with cryptanalytic applications. Journal of Cryptology, 12(1), 1999.

