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ABSTRACT

The collision search problem is, given a function F with a finite range, to find distinct inputs x and x' such that F(x) equals F(x'). 
Collision search is an important tool in cryptanalysis, most notably for computing discrete logarithms, making meet-in-the-
middle attacks, or finding hash function collisions. After a brief review of historical results, this section describes the state-of 
the-art serial and parallel methods for searching collisions.
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Tails and Cycles
Let Fn denote the set of all functions from a domain D of size 
n to a codomain of size n, with n finite. Let F be random ele-
ment of Fn (that is, a random mapping from and to n-element 
sets). The range of F is expected to contain  
distinct elements. Therefore , F is expected to have collisions 
F(x)=F(x’),x ¹ x’. Efficient methods for finding such collision 
exploit the structure of F as collection of cycles.

Consider the infinite sequence  for some ar-
bitrary starting value  .Because D is finite, this sequence 
will eventually begin to cycle. Hence, there exist two small-
est integers (the tail length) and (the cycle length) 
such that  for every  . Such a structure 
then yields a collision at the point where the cycle begins:

.

The birthday paradox illustrates well the above structure: in a 
sequence of random numbers in{1,…,n}, the expected num-
ber of draws before a number occurs twice is asymptotically 

. This is because the expected values of the tail length 
m and of the cycle length l sum to . 
This value is sometimes called the rho length, because of the 
rho shape of the sequence, as noticed by Pollard[1].

A trivial collision search algorithm repeats the following: pick 
random x and x’ , return them as a collision if F(x) equals F(x’) 
, otherwise continue the search. About n trials are required, 
since x and x’ collide with probability . A less trivial algo-
rithm exploits the existence of cycles by storing a sequence 

 , sort it and look for a collision. State-
of-the-art methods eliminate the large memory requirements 
and the cost of sorting a large list. In the following we review 
these methods , starting with explicit cycle-detection meth-
ods, then presenting modern techniques that tailored to su-
percomputers. Finally, we explain how to apply those meth-
ods to concrete cryptanalytic problems.

Cycle Detection Based Methods
The low-memory cycle-detection method of Floyd is at the base 
of Pollard’s rho method for factoring and computing discrete 
logarithms . It is based on the following observation from [2]:

Theorem 1 : For a periodic sequence x0,x1,x2,…, there 
exists a unique i>0 such that xi=x2i and the smallest such 

.

Based on Theorem 1 , Floyd’s method picks a starting 
value  and compares the values  and 

.The expected number of iterations before 
reaching a match is [19]  .

Floyd’s algorithm detects that the sequence has reached a 
cycle , but does not give the values of l and m , nor a collision 
for F. this can be done as follows, once xi = x2i is found: gen-
erate xj and , until finding  at the first equal-
ity we have j=m. If none of the values equals xi then l=m. 
If none on average  evaluations of F. Finally, detecting 
the cycle and locating the collision with the above method 
costs

evaluations of F, and requires negligible memory (storage of 
a few xi’s). Slightly more efficient variants of Floyd’s algorithm 
were proposed by Brent [3] and Teske [4]. Sedgewick et al. 
showed how to eliminate the redundant computations by us-
ing a small amount of memory [5], but their algorithm is not as 
general as Floyd’s (in particular, it cannot be combined with 
Pollard’s rho factoring method).

Parallel Search with Distinguished Points
A disadvantage of Floyd’s algorithm (and thus of Pollard’s rho 
method) is that it cannot be parallelized efficiently: m proces-
sors don’t provide a 1/m reduction of complexity. This is be-
cause one has to wait for a given invocation of F to end before 
the next can begin. Efficient parallelization of collision search 
takes a different approach, by using the idea of distinguished 
points, The idea of using distinguished points (i.e., points that 
have some predefined easily checkable property, like having 
ten leading zero bits) was proposed by Quisquater and De-
lescaille [6] for searching DES collisions, and earlier noted 
by Rivest [7, p.100] in the context of Hellman’s time-memory 
tradeoff. Below we describe a simple method for efficient par-
allelization of collision search using distinguished points, and 
due to van Oorshot and Wiener [8].

Let m be the number of processors available, and consider 
some easily checked property  that a random point sat-
isfies with probability θ <1. To perform the search, each pro-
cessor

1. Selects a starting value x0 .
2. Computers  , until a distinguished point 

 is reached;
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3. Add xd (along with x0 and d ) to a common list for all pro-
cessors;

4. Repeats the process.

The algorithm halts when a same distinguished point ap-
pears twice in the common list, which means that two dis-
tinct sequences (x0,…,xi) and  lead to same value 

(one should ensure that a same starting value is not 
used twice). With high probability , one will easily deduce 
a collision from these two sequences ( if the first sequence 
leads to the starting point of the second, then no collision 
will be found).

The above algorithm runs in time about  to lo-
cate a collision, hence parallelization provides a linear speed-
up of the search.

Application to Meet-in-the-Middle
Parallel collision search using distinguished points can be di-
rectly applied to find collisions for hash functions. It can also 
be adapted to compute discrete logarithms in cyclic groups. 
Here we show how it can be used to perform meet-in-the-
middle (MITM) attacks, which are used for computing preim-
ages of MD5 and HAVAL.

The problem considered is, given two functions F1 and F2 in 
Fn , to find x and x’ (not necessarily distinct) such that F1(x) 
equals F2(x’). A solution can be found by defining an easily 
checked property P , and by considering the function

Under reasonable assumptions on F1 and F2 , and assum-
ing that a random x satisfies P with probability 1/2, a collision 
F(x) = F(x’) will be useful as soon as x satisfies P but not x. 
When the cost of computing F1 and F2 significantly differs 
(for example if one of them represents a shortcut preimage 
attack on some component), the property P can be adapted 
to optimize the complexity of the attack, so that F1 is called 
more often than F2.

Conclusion:
Note that the MITM problem considered here, and often en-
countered in cryptanalysis, differs from what is called MITM 
in [8]. Indeed, the latter attack looks for a single “golden val-
ue”, and its complexity heavily depends on the domain size, 
whereas in the former complexity only depends on the range 
size. Example of applications of memory less MITM are our 
attacks on the SHA-3 candidate MCSSHA-3 and on MD5.
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