
Volume : 3 | Issue : 5 | June 2013 ISSN - 2250-1991

166 X PARIPEX - INDIAN JOURNAL OF RESEARCH

ABSTRACT

Software Metric is the measure specific property of software. Metrics mainly help in the maintainability of the software by
helping to diagnose the problem area, bug fixing and meeting new requirements. Maintainability of software is the degree to
which it can be understood and corrected. Software developers often spend at least 70% of their project budget and time on
the software maintenance. This paper discusses how to select metrics that can be helpful to developers for maintainability.

Research Paper

Proposed Software Metrics for Software

Development for Contribution to

Maintainability

*Kirti Mathur ** Amber Jain

Information Technology

* International Institute of Professional Studies, D. A. University, Indore

** International Institute of Professional Studies, D. A. University, Indore

Keywords : Software, metrics, maintainability, modifiability, deterioration

1. Introduction
Software metrics are a quantitative measure of the degree to
which a system, component or process possesses a given
attribute[5]. It takes more than one and different metrics for
each person in development team to understand, evaluate
or control a software product, process, service or project[10].

Maintainability means the ability of software to be maintained,
correct and adopt new changes in itself.

Software metrics can be used by developers for software
maintainability. Not all metrics have the same discriminatory
power when it comes to predicting the quality of a software
object[2].

2. LITERATURE REVIEW
2.1 Software Metrics:
It is a quantitative measure of the degree to which a system,
component or process possesses a given attribute[5]. Metrics
can help us understand, evaluate and control our software
products, processes, services and predict attributes of soft-
ware entities[14].

2.2 Way to find proper software metrics:
Software maintainability is a difficult factor to quantify. Soft-
ware metrics can provide maintainability statistics required
by management as well as engineers for making technical
decisions. A proper approach find software metrics involves:

2.2.1 Identify the customer who is going to use the met-
ric:

Customer type Matrix form required
Functional and Project

Managers:

- Schedules

- Budget

Software Developers/

Programmers

- Time spent per task

- Inspection of data including

defects

- Root cause of defects

Software Testers

- Test cases

- Planned/executed/pa-ssed

- Problem reports from Testing

- Test coverage
Configuration management
Specialists

- Lines of code

- Data changed

Table-1: Metrics used by customers

2.2.2 Select one or more measurable goals:
Organizational level goals: This includes[8]:
· high-level strategic goals[8] (like low cost provider)
· maintaining high level of customer satisfaction
· meeting projected revenue and profit margin target.

Project level goals: This includes:
· goals that emphasize project management
· control issues or project level requirements and objec-

tives

2.2.3 Ask questions:
This is to ensure that each goal is being obtained. For exam-
ple, if our goal was to ship only defect-free software, ques-
tions might be:

· Is the software product adequately tested?
· How many defects are still undetected?
· Are all known defects corrected?

2.2.4 Select metrics:
Remember software metrics don’t solve problems, People
solve problems[10]. Software metrics act as indicators, so
people can make more informed decisions and intelligent
choices.

2.2.5 Find the standard definitions:
Find the standard definitions for the entities and their meas-
ured attributes. Terms like defect, problem report, size, pro-
ject, quality, maintainability, and user-friendliness are am-
biguous have different meanings for different individuals. For
example: defect report, problem report, incident report or fault
report may be used by various organizations to mean the
same thing, but unfortunately they may also refer to different
entities.

Differing interpretations of terminology is the biggest barriers
to understanding[4]. Unfortunately, there is little standardiza-
tion in the industry of the definitions for most software attrib-
utes. The suggested approach is to adopt standard definitions
within your organization and then apply them consistently.

2.2.6 Choose a measurement function for the metrics:
 Measurement function defines how we are going to calculate
the metric. Base measures (or metric primitives) are meas-

Volume : 3 | Issue : 5 | June 2013 ISSN - 2250-1991

PARIPEX - INDIAN JOURNAL OF RESEARCH X 167

ured directly and their measurement function typically con-
sists of a single variable. Derived measures are modeled
using mathematical combinations of base or derived meas-
ures. Examples of measures include:

· number of lines of code reviewed during an inspection
· hours spent preparing for an inspection meeting.
· inspection’s preparation rate (number of lines of code re-

viewed divided by the number of preparation hours).

2.3 Software maintainability:
Software doesn’t change, but factors such as bugs, new ide-
as/features, organizational priorities, laws, project sponsors,
users, new operating systems and hardware changes force it
to change. Software systems are built under high pressure to
meet deadlines with emphasis on performance, reliability, and
usability[1]. Maintainability is the ease of maintaining a soft-
ware product such that it can be helpful to isolate and correct
defects or their causes[6].

Figure-1: Maintainence types

2.4 People responsible for the maintainability:
Everyone in development team is responsible for the main-
tainability:
· Project manager/Functional manager: Responsible for

controlling the project size, resources required, budgeting
and scheduling activities.

· Developer/Programmer: Responsible for the actual de-
velopment, designing and coding of software

· Tester: Responsible for testing that the software works as
expected meeting the requirements that guided its design
and development.

2.5 Software Maintainability Characteristics:
· Effect of maintainability: Software deteriorates with aging.

Due to careless changes and number of times the main-
tainability has been implemented, at some point software
can’t incorporate new changes.

· Maintainability never stops: Changes are inevitable.

2.6 Type of metrics for software maintainability
2.6.1 Metrics for Software Management:

Productivity

· Number of lines of code/modules/classes/

deliverables developed in unit time or per

resource.

Quality:

· Project complexity

· Portfolio complexity

· Degree of client/executive management

satisfaction

Deliverables

· Ratio between achieved and planned

deliverables.

· Number of reworks because of no co-

ordinances between specifications and
results.

Costs:

Statistics regarding:

· different costs categories

· project portfolio value

· resources usage and costs

· resource loading and distribution.

Risks:
· Number of identified risks
· Number of raised risks

· Number of avoided risks.

Table-2: Metrics for managers

2.6.2 Metrics for Developers:
· lines of code written
· user tasks completed
· bugs fixed
· tests written
· tests passing first time
· bugs found
· code churn vs. new code (i.e. “write first time” vs “rewrit-

ten repeatedly”)
· Percentage of time in IDE vs. debugging
· Percentage of time in IDE vs. non-work applications
· code performance (against some arbitrary or customer-

specified benchmark)
The best metrics tend to be combinations (e.g. average of
bugs found per line of code written) rather than a single meas-
ure.

2.6.3 Metrics for Testers:

Customer

satisfacti-on

index

· Number of system enhancement and

maintenance fix requests per year
· User friendliness in training new users

and customer service

· Number of product recalls or fix
releases and reruns

Delivered defect

quantities

· Requirements defect

· Design defect

· Code defect

· Documentation defects

· Defect introduced by fixes, etc.
Delivered defect

quantities

and Responsi-

veness to users

· Time for minor vs. major enhancements

· Actual vs. planned elapsed time

Product

volatility

· Ratio of maintenance fixes vs.
enhancement requests

Defect ratios
· Defects found after product delivery:

· per function point

· per LOC

Defect removal

efficiency

· Number of post-release defects

(reported by users)

· Ratio of defects found internally prior to

release as a percentage of all defects

· All defects including defects found

developers and users in the first year

Complex-ity

of delivered

product

· McCabe's cyclomatic complexity counts

across the system

· Halstead’s measure

· Card's design complexity measures

· Predicted defects and maintenance

costs, based on complexity measures

Test coverage

· Breadth of functional coverage

· Percentage of paths, branches or

conditions that were tested

· Percentage by criticality level

· Ratio of number of detected faults to the

number of predicted faults.

Cost of defects

· Business losses per defect that occurs

during operation

· Business interruption costs; costs of

workarounds

· Lost sales and lost goodwill

· Litigation costs resulting from defects

· Annual maintenance and operating

cost (per function point)

Volume : 3 | Issue : 5 | June 2013 ISSN - 2250-1991

168 X PARIPEX - INDIAN JOURNAL OF RESEARCH

REFERENCES

1. How much information do software metrics contain, Yossi Gil, Maayan Goldstein, Dany Moshkovich, 2009 | 2. A systematic review of software maintainability predic-
tion and metrics 2009- Mehwish Riaz, Emilia Mendes, Ewan Tempero, The University of Auckland | 3. Security metrics for software systems 2009, Ju An Wang, GA
Hao Wang, Minzhe Guo, Min Xia | 4. Designing Maintainability in Software Engineering: a Quantified Approach, 2008 Tom Gilb | 5. An empirical analysis of the impact
of software development problem factors on software maintainability 2008 - Jie-Cherng Chen, Sun-Jen Huang, National Taiwan University of Science and Technology |
6. Software Maintenance: Similarity and Inclusion of Rules in Knowledge Extraction 2006 Marek Reformat, Alberta Univ., Edmonton, Alta. Aashima Kapoor ; Nicolino J.
Pizzi | 7. Experience measuring maintainability in software product lines 2006 - Gentzane Aldekoa, Salvador Trujillo, Goiuria Sagardui, Oscar Díaz | 8. An Exploratory
Study of How Developers Seek, Relate, and Collect Relevant Information during Software Maintenance Tasks 2006, Ko, A.J. Human-Comput. Interaction Inst., Carnegie
Mellon Univ., Pittsburgh, PA , Myers, B.A. ; Coblenz, M.J. ;Aung, H.H. | 9. Rodrigo Vivanco and Nicolino Pizzi, 2004 Finding effective software metrics by using parallel
generic algorithm 2004 | 10. An Integrated Measure of Software Maintainability, In Proceedings of Annual Reliability and Maintainability Symposium, IEEE, 2002. Ag-
garwal K. K., Singh Y., and Chhabra J. K. | 11. Carolyn Seaman 2002, The Information Gathering Strategies of Software Maintainers. | 12. Rikard Land 2002, Software
Deterioration and Maintainability – A Model Proposal. | 13. Dimitris Stavrinoudis, Michalis Xenos, Dimitris Christodoulakis 1999, Relation between software metrics and
maintainability. | 14. A Comparative Survey of Software Quality | Metrics, Kirti Mathur, Amber Jain, Paripex, April 2013, |

Costs of quality

activities

Cost of:

· reviews, inspections, preventive

measures

· test planning preparation

· test execution, defect tracking, version

change control

· diagnostics, debugging , fixing
· tools and tool support

· test case library maintenance

· testing & QA education associated with

the product

· monitoring and oversight by QA

organization

Re-work

Re-worked:

· effort

· LOC

· software components

Reliability

· Availability

· Mean time between failure (MTBF).

· Man time to repair (MTTR)

· Reliability ratio (MTBF / MTTR)

· Number of product recalls or fix
releases and production re-runs as a

ratio of production runs

Table-3: Metrics for testers

2.6.4 Metrics for customers:

Reliab-ility

Company’s ability

to perform the

promised service

dependably and

accurately.

· Meeting customer

Specifications
· Products/Services/

Modules works Right first
time

· Consistency

Performance/Availability

· Accuracy and

completeness of Service

Assur-ance

Employees’

ability to convey

trust and

confidence and
their knowledge,

competence and

courtesy

· Are Materials provided

(Training manuals/

Broachers/Presentations

up-to date)

· Provided honest and

trustworthy services

· Customer data safety

assured

Tangi-bles

Physical facilities,

equipment and

appearances

that impress the

customer

· Ease of support access

· Demonstrate customers

and issues understanding

Empa-thy

Level of caring,

individuali-zed

attention, access,

communica-tion

and understand-

ing perceived by

customer

· Ease of use of products/

services

· Easy to understand

written materials

· Satisfaction with IT-

Infrastructure

Respo-

nsiven-ess

Willingness to

help clients and

provide prompt

service

· Speed/willingness of

Response

· Commitment given and

met

Table-4: Metrics for Customers

3. Relation between software metrics and maintainability
Software metrics can estimate only the programmers’ opinion
of maintainability. Choosing appropriate metrics for measur-
ing the maintainability depends on product’s nature and the
programming language used[4]. Using a metrics framework
allows programmers to locate modules and routines with a
low level of maintainability. Metrics assist programmers to
inspect their code and make the necessary corrections and
improvements during the implementation phase. Software
metrics are aimed for the improved estimation of readability,
clearness, sufficiency of comments and simplicity of code[3].

4. Recommendation for keeping software maintainable
When the software is first being developed:

· Code readability should be a primary goal.
· Setup automated testing.
· Use version control software.
· Software should be easy to understand, make changes,

test, operate, deploy.

5. CONCLUSION AND FUTURE WORK
Software metrics play an important role in maintainability of
software. Well formulated metrics can help organizations to
improve software quality.

· Software maintainability is not only restricted to the met-
rics evaluation but in future also can be combined with
Configuration Management System of the Software Evo-
lution.

· This metrics evaluation can be useful for object-oriented
software.

