
Volume : 2 | Issue : 3 | March 2013 ISSN - 2250-1991

10 X PARIPEX - INDIAN JOURNAL OF RESEARCH

ABSTRACT

This research paper presents the different types of sorting algorithms of data structure like quick, heap and insertion and also

gives their performance analysis with respect to time complexity. These three algorithms have been an area of focus for a

long time but still the question remains the same of “which to use when?” which is the main reason to perform this research.

This research provides a detailed study of how all the three algorithms work and then compares them on the basis of various

parameters apart from time complexity to reach our conclusion.

Keywords: Quick sort, Heap sort, Insertion sort, time complexity, other performance parameters.

Research PaperResearch Paper

A Comparison based Analysis of different

types of Sorting Algorithms with their

Performances

* Ms. Nidhi Chhajed ** Mr. Simarjeet Singh Bhatia

Engineering

* Assistant Professor, C.S.E Dept. PIES, Indore (M.P)

** Assistant Professor, C.S.E Dept. PIES, Indore (M.P)

I. INTRODUCTION
In the present scenario an algorithm and data structure play
a significant role for the implementation and design of any
software. In data domain, sorting refers to the operation of
arranging numerical data in increasing or decreasing order
or non numerical data in alphabetical order[1]. Among quick,
heap and insertion it would be interesting to see their worst
case complexities which are

O(N^2), O(NlogN), O(N^2), respectively[2]. The efficiency of a
sorting algorithm depends on how fast and accurately it sorts
a list and also how much space it requires in the memory.
Among the three it can be seen that quick and insertion sort
performs with the order of n^2 contrast to heap performing
with the order of nlogn. On the other hand if we study their
space complexity we will find that all sorting techniques have
the complexity of the O(1). So to assess the performance of
an algorithm[3] the above two parameters are most important
in their own.

II. WORKING PROCEDURE OF ALGORITHMS
1) QUICK SORT:
This sorting algorithm is based on Divide-and-Conquer para-
digm that is the problem of sorting a set is reduced to the
problem of sorting two smaller sets. The three step divide and
conquer strategy for sorting a typical sub array A[p….r] is as
follows:

a) Divide: The array A[p….r] is partitioned(rearranged) into
two non-empty sub arrays A[p….q] and A[q+1....r] such that
each element of A[p….q] is less than or equal to each ele-
ment of A[q+1….r]. The index of q is completed as part of this
partitioning procedure.

b) Conquer: The 2 sub arrays A[p….q] and A[q+1….r] are
sorted by recursive calls to quick sort procedure[4].

c) Combine: Since the sub arrays are sorted in place, no work
is headed to combine them, the entire array A[p....r] is now
sorted.

The algorithm is divided into two parts. The first part gives a
procedure called QUICK, which executes the reduction steps
of the algorithm and the second part uses QUICK to sort the
entire list.

Procedure:- QUICK(A,N,BEGIN,END,LOCN)

Here A is an array of N elements. Parameters BEGIN and
END contain the boundary values of the sub list of A to which
this procedure applies. LOCN keeps the track of the position
of the first element A[BEGIN] of the sub list during the pro-
cedure.

The local variables LEFT and RIGHT will contain the bound-
ary values of the list of elements that have not been scanned.

Steps:
1) [Initialize] set LEFT:=BEGIN, RIGHT:=END, and

LOCN:=BEGIN.
2) [Scan from right to left.]
a) Repeat while A[(LOCN)<=A[RIGHT] and LOCN!=RIGHT:
 RIGHT :=RIGHT – 1.[End of loop.]
b) If LOCN=RIGHT, then : return.
c) If A[LOCN]>A[RIGHT], then:
i) [Interchange A[LOCN] and A[RIGHT].] TEMP:=A[LOCN),

A[LOCN]:=a[RIGHT),a[RIGHT]:=TEMP.
ii) Set LOCN:=RIGHT.
iii) Go to Step 3. [End of If structure.]
3) [Scan from left to right.]
a) Repeat while A[LEFT]<=A[LOCN) and LEFT!=LOCN:

LEFT=LEFT+1. [End of Loop.]
b) If LOCN=LEFT, then: Return.
c) If A[LEFT]>A[LOCN], then
i) [Interchange A[LEFT] and A[LOCN].] TEMP:=A[LOCN],

A[LOCN]:=A[LEFT],A[LEFT]:=TEMP.
ii) set LOCN:=LEFT.
iii) Go to Step ii. [End of if structure.]

Algorithm[5]:-

The quick sort algorithm sorts an array A with N elements in
the following way.

1. [Initialize] TOP:=Null
2. [Push boundary values of A onto stacks when A has 2 or

more elements.] If N>1,then TOP:TOP+1,LOWER[1]:=1,
UPPER[1]=N.

3. Repeat steps 4 to 7 while TOP!=NULL.
4. [Pop sub lists form stacks.] Set BEGIN:=LOWER[TOP],E
 ND:=UPPER[TOP], TOP:=TOP-1.

Volume : 2 | Issue : 3 | March 2013 ISSN - 2250-1991

PARIPEX - INDIAN JOURNAL OF RESEARCH X 11

5. Call QUICK(A,N,BEGIN,END,LOCN).[Procedure]
6. [Push left sub list onto stacks when it has 2 or more ele
 ments.]

If BEGIN<(LOCN-1),then:

TOP:=(TOP+1),LOWER[TOP]:=BEGIN,

UPPER[TOP]=(LOCN-1).

[end of if structure.]

7. [Push right sub list onto stacks when it has 2 or more ele-
ments.]

If (LOCN+1)<END, then:

TOP:=TOP+1, LOWER[TOP]:= LOCN+1,

UPPER[TOP]:=END.

[end of if structure.]

[end of Step 3 loop.]

8.Exit.

The Figure1 below shows how quick sort algorithm works

The elements in the list are:

3, 1, 2, 4, 5, 9, 6, 8, 7

The pivot element here is 5.

Figure 1: Working of Quick Sort

Time Complexity Of Quick Sort

The running time of a sorting algorithm is usually measured
by the number f(n) of comparisons required to sort n ele-
ments[6]. The recurrence relation for quick sort is given by:

Best-case analysis:
The pivot is in the middle:

T(N) = 2T(N/2) + cN

Dividing by N:

T(N) / N = T(N/2) / (N/2) + c

On solving:

T(N/2) / (N/2) = T(N/4) / (N/4) + c

T(N/4) / (N/4) = T(N/8) / (N/8) + c……

T(2) / 2 = T(1) / (1) + c

Adding all equations:
T(N) / N + T(N/2) / (N/2) + T(N/4) / (N/4) + …. + T(2) / 2 = (N/2)
/ (N/2) + T(N/4) / (N/4) + … + T(1) / (1) + c.logN

After crossing the equal terms:
T(N)/N = T(1) + cLogN = 1 + cLogN

T(N) = N + NcLogN

Therefore T(N) = O(NlogN)

Average case analysis
Similar computations, resulting in T(N) = O(NlogN) The aver-
age value of T(i) is 1/N times the sum of T(0) through T(N-1)

1/N S T(j), j = 0 thru N-1
T(N) = 2/N (S T(j)) + cN
Multiply by N
NT(N) = 2(S T(j)) + cN*N

To remove the summation, we rewrite the equation for N-1:

(N-1)T(N-1) = 2(S T(j)) + c(N-1)2, j = 0 thru N-2 and subtract:
NT(N) - (N-1)T(N-1) = 2T(N-1) + 2cN -c

On solving Continuously, rearrange terms, drop the insignifi-
cant c:

NT(N) = (N+1)T(N-1) + 2cN

Divide by N(N+1):

T(N)/(N+1) = T(N-1)/N + 2c/(N+1)

On solving:

T(N)/(N+1) = T(N-1)/N + 2c/(N+1)

T(N-1)/(N) = T(N-2)/(N-1)+ 2c/(N)

T(N-2)/(N-1) = T(N-3)/(N-2) + 2c/(N-1)….

T(2)/3 = T(1)/2 + 2c /3

Add the equations and cross equal terms:
T(N)/(N+1) = T(1)/2 +2c S (1/j), j = 3 to N+1

T(N) = (N+1)(1/2 + 2c S(1/j))

The sum S (1/j), j =3 to N-1, is about LogN

Thus T(N) = O(nlogn).

Worst Case Analysis:
This happens when the pivot is the smallest (or the largest)
element.

T(N) = T(i) + T(N - i -1) + cN

T(N) = T(N-1) + cN, N > 1

On continuously solving:
T(N-1) = T(N-2) + c(N-1)

T(N-2) = T(N-3) + c(N-2)

T(N-3) = T(N-4) + c(N-3)

T(2) = T(1) + c.2

Volume : 2 | Issue : 3 | March 2013 ISSN - 2250-1991

12 X PARIPEX - INDIAN JOURNAL OF RESEARCH

Adding all equations we get:
T(N) + T(N-1) + T(N-2) + … + T(2) = T(N-1) + T(N-2) + … +
T(2) + T(1) + c(N) + c(N-1) + c(N-2) + … + c.2

T(N) = T(1) + c(2 + 3 + … + N)

T(N) = 1 + c(N(N+1)/2 -1)

Therefore T(N) = O(n2)

2) HEAP SORT:
The heap(binary) data structure is an array object that can
be viewed as a complete binary tree as shown in figure1[7]:

Figure 2: Structure of a heap

Each node of the tree corresponds to an element of the array
that stores the value in the node. The tree is completely filled
on all levels except possibly the lowest, which is filled from
the left up to a point. An array B that represents a heap is an
object with two attributes: length[B] which is the number of
elements in the array and heap-size[B], the number of ele-
ments in the heap stored within array B. The root of the tree is
B[1] and given the index I of a node, the indices of its parent
PARENT(i), left child LEFT(i), and right child. RIGHT(i) can be
computed simply:

PARENT(i):

return └i/2┘

LEFT(i):

return 2i

RIGHT(i):

return 2i+1;

Heaps also satisfy the “heap property” for every node I other
than the root,

A[PARENT(i)]>=A[i]

i.e, the value of a node is at most the value of its parent. Thus,
the largest element in a heap is stored at the root, and the sub
trees rooted at a node contain smaller values smaller values
than does the node itself.

3) INSERTION SORT:
This algorithm considers the elements one at a time, insert-
ing each in its suitable place among those already consid-
ered (keeping them sorted). Insertion sort is an example of
an incremental algorithm. It builds the sorted sequence one
element at a time.

Algorithm[11]:
We use a procedure INSERTION_SORT. It takes an array
A[1.. n] as parameter. The array A is sorted in place: the num-
bers are rearranged within the array, with at most a constant
number outside the array at any time.

The algorithm for insertion sort is as follows:
INSERTION_SORT (A)

1. FOR j ← 2 TO length[A]
2. DO key ← A[j]
3. {Put A[j] into the sorted sequence A[1 . . j − 1]}
4. i ← j − 1
5. WHILE i > 0 and A[i] > key
6. DO A[i +1] ← A[i]
7. i ← i − 1
8. A[i + 1] ← key

Figure 3 shows the process of insertion sorting

Time Complexity of Insertion Sort[11]-
Since the running time of an algorithm on a particular input
is the number of steps executed, we must define "step" in-
dependent of machine. We say that a statement that takes ci
steps to execute and executed n times contributes ci*n to the
total running time of the algorithm. To compute the running
time, T(n), we sum the products of the cost and times column.
That is, the running time of the algorithm is the sum of running
times for each statement executed. So, we have

T(n) =
c1n

 +
c2

 (n − 1) + 0 (n − 1) + c4 (n − 1) +
c5

 ∑2 ≤ j ≤ n (tj)+
c6

∑2 ≤ j ≤ n (tj − 1) + c7 ∑2 ≤ j ≤ n (tj − 1)+

c8
 (n − 1)-----Eq.1

In the above equation we supposed that tj be the number of
times the while-loop (in line 5) is executed for that value of j.
Note that the value of j runs from 2 to (n − 1). We have

T(n) =
c1n

 +
c2

 (n − 1) + c4 (n − 1) +
c5

 ∑2 ≤ j ≤ n (tj)+
c6

 ∑2 ≤ j ≤ n (tj −
1) + c7 ∑2 ≤ j ≤ n (tj − 1) +

c8
 (n − 1) Eq.2

III. EXPERIMENT AND RESULT TO MEASURE THE PER-
FORMANCE OF ALGORITHMS
In this experiment we have used Turbo C++ 3.0 compiler in
which the data set contains random numbers. The initial range
of data set starts from 50 to 10000 elements with increment
of 100 elements and later the size of elements increased and
reached to 30000 with the interval of 1000 elements. Table1
shows this data set and clock tick measurement and the ta-
ble2 shows the total time taken by the algorithm in seconds to
sort the elements. The table 3 shows the comparative study
of their characteristics, time as well as space complexities.

NUMBER OF CLOCK
TICKS /NO. OF
ELEMENTS

10000 15000 20000 25000 30000

QUICK SORT Nil Nil Nil Nil Nil

HEAP SORT Nil Nil Nil 3 3

INSERTION SORT 1 3 5 7 10

TABLE 1: shows the number of clock ticks taken by the
three algorithms for sorting

Sorting
Algorithms 10000 15000 20000 25000 30000

Quick Nil Nil Nil Nil Nil

Heap Nil Nil Nil 0.164835 0.164835

Insertion
Sort 0.054945 0.164835 0.274725 0.384615 0.549451

Volume : 2 | Issue : 3 | March 2013 ISSN - 2250-1991

PARIPEX - INDIAN JOURNAL OF RESEARCH X 13

TABLE 2: shows time taken(in seconds) by the three algorithms to sort array

QUICK HEAP INSERTION
METHOD Partitioning Selection Incremental

TIME COMPLEXITY
BEST
AVERAGE
WORST

O(nlogn)
O(nlogn)
O(n^2)

O(nlogn)
O(nlogn)
O(nlogn)

O(n)
O(n^2)
O(n^2)

SPACE COMPLEXITY O(1) O(1) O(1)

STRATEGY CONCEPT OF PIVOT
ELEMENT

CREATES A HEAP OF
ELEMENTS

SCAN ALL THE ELEMENTS &
DOES SORTING

COMPARISON BASED YES YES YES

INPLACE YES YES YES

TYPE INTERNAL INTERNAL INTERNAL

STABLE DEPENDS ON ELEMENTS YES YES

REFERENCES

[1] Data Structures by Seymour Lipschutz and G A Vijayalakshmi Pai (Tata McGraw Hill companies), Indian adapted edition-2006,7 west patel nagar,New Delhi-110063.
| [2] Introduction to Algorithms by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, fifth Indian printing (Prentice Hall of India private limited), New Del-
hi-110001. | [3] Computer Algorithms by Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajasekaran, Galgotia publications,5 Ansari road, Daryaganj, New Delhi-110002. | [4]
C.A.R. Hoare, Quicksort, Computer Journal, Vol. 5, 1, 10-15 (1962). | [5] P. Hennequin, Combinatorial analysis of Quick-sort algorithm, RAIRO: Theoretical Informatics
and Applications, 23 (1988), pp. 317–333 | [6] Lecture Notes on Design & Analysis of Algorithms G P Raja Sekhar Department of Mathematics I I T Kharagpur. | [7]
The external Heapsort by L M Wegner, J I Teuhola IEEE Transactions on Software Engineering (1989) Volume: 15, Issue: 7, Pages: 917-925 ISSN: 00985589 DOI:
10.1109/32.29490 | [8] Worst-case analysis of a generalized heapsort algorithm A. Paulik Institut für Numerische und Angewandte Mathematik, Lotzestrasse 16–18,
D-3400 Göttingen, FRG, (science direct.com). | [9] Alexandros Agapitos and Simon M. Lucas, “Evolving Efficient Recursive Sorting Algorithms”, 2006 IEEE Congress
on Evolutionary Computation Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada July 16- 21, 2006. | [10] Knuth D. (1997) “The Art of Computer Program-
ming, Volume 3: Sorting and Searching’’, Third Edition. Addison-Wesley, 1997. ISBN 0-201-89685-0. pp. 138–141, of Section 5.2.3: Sorting by Selection | [11] Let Us
C by Yashvant Kanethkar, 8th edition(BPB publications).b-14 Connaught place, New Delhi-110001. | [12] MERRITT S. M. (1985), “An inverted taxonomy of Sorting
Algorithms. Programming Techniques and Data Structures”, Communications of ACM, Vol. 28, Number 1, ACM. | [13] G. Franceschini. An in-place sorting algorithm
performing O(n log n) comparisons and O(n) data moves. In Proc. 44th IEEE Ann. Symp. on Foundations of Computer Science, pages 242–250, 2003 |

TABLE 3: shows comparison of the three sorting tech-
niques on various parameters

x-axis-:No of Elements
y-axis-:Clock ticks

Figure 4:Graph comparing all the three algorithms.

Quick
0

2

4

6

8

10

1
0

0
0

0

1
5

0
0

0

2
0

0
0

0

2
5

0
0

0

3
0

0
0

0

Quick

Heap

Insertion

IV. CONCLUSION:
From the above analysis it can be said that in a list of random
numbers from 10000 to 30000, insertion sort takes more time
to sort as compare to heap and quick sorting techniques. If we
take worst case complexity of all the three sorting techniques
then insertion sort and quick sort technique gives the result
of the order of N^2, but here if one needs to sort a list in this
range then quick sorting technique will be more helpful than
the other techniques. Insertion sort takes more time among
all the three techniques and has exponential growth rate as
number of elements increases.

