Fundamental of Algebra

* Kiran Singh Bais

* Prestige Institute of Engg.\&Science, Indore(M.P.)

ABSTRACT
In this paper we discuss basic properties of algebra for fitting we divided this paper in two sections, section 1 deals with the definitions and section 2 related two properties of algebra.

Keywords:

1. Introduction:

Definition: Let $\mathrm{u} \in \mathrm{R}^{N}$ be an N -component column vector.
We say that u is lexicographically positive and write $u \succ 0$
iff the first non zero component of u is positive. Next, we say u is lexicographically negative, $u \prec 0$ iff $-u$ is lexicograph-
ically positive .Further, we say u is lexicographically nonnegative ($u \succ 0$) or nonpositive ($u \preceq 0$) iff ($u \succ 0$ or $u=0$), or
($u \prec 0$ or $u=0$) respectively .Notations: For, $u, v \in R^{N}$, we denote
(1) $u \succ v<=>u-v \succ 0$
(2) $u \prec v$ <=> u - v $\prec 0$
(3) $u \succ v<=>u-v \succeq 0$
(4) $u \prec v$ <=> $u-v \prec 0$

We shall not assume the commutativity of the field F. F may be skew. Let V be vector space over F. Suppose a binary relation \prec be given on V and a binary relation \leq be given of F.

Define $\mathrm{u} \succ \mathrm{v}$ iff $\mathrm{v} \prec \mathrm{u}$. From (3), it follows that $\mathrm{u} \succ 0$ iff $-\mathrm{u} \prec$
0 . Further, define $\lambda \geq \mu$ iff $\mu \leq \lambda$ iff $\lambda-\mu \geq 0$. Then it also follows that $\lambda \geq 0$ iff $-\lambda \leq 0$ also $\lambda \leq 0$ iff $-\lambda \geq 0$.

We assume that following statements are true for $u, v \in V$, $\lambda, \mu \in \mathrm{F}$.
(i) $\mathrm{u} \succeq 0 \vee \mathrm{u} \preceq 0$
(ii) $u \succeq 0 \wedge u \preceq 0 \Rightarrow u=0$
(iii) $u \succeq 0 \wedge v \succeq 0=>u+v \succeq 0$
(iv) $\lambda \geq 0 \wedge u \succeq 0=>\lambda u \succeq 0$ and
(v) $\lambda \geq 0 \vee \lambda \leq 0$
(vi) $\lambda \geq 0 \wedge \lambda \leq 0=>\lambda=0$
(vii) $\lambda \geq 0 \wedge \mu \geq 0 \Rightarrow \lambda+\mu \geq 0$
(viii) $\lambda \geq 0 \wedge \mu \geq 0 \Rightarrow \mu l \geq 0$

Definition: A cone C in a vector space is a set such that $\mathrm{u} \in$
$\mathrm{C}, \lambda \in \mathrm{F}, \lambda>0$ implies $\lambda \mathrm{u} \in \mathrm{C}$. Observation: The set
$\{u \in V / u \succeq 0\}$ is a cone in V and the set $\{\lambda \in F / \lambda \geq 0\}$ is a cone in F.

Proposition 2.1 The relation \preceq is reflexive, transitive, antisymmetric and total ($u \preceq v$ or $u \succeq v$).

Proof: We have $u-u=0$. Hence $u \preceq u$. Next , if $u \preceq v$ and $u \succeq v$ then
$u-v \preceq 0$ and $u-v \succeq 0$. By (ii) $u-v=0$. i.e. $u=v$. For $u \preceq$
$\mathrm{v}, \mathrm{v} \preceq \mathrm{w}$, we have $\mathrm{v}-\mathrm{u} \succeq 0, \mathrm{w}-\mathrm{v} \succeq 0$. By (iii) , $(\mathrm{v}-\mathrm{u})+$
($w-v$) $\succeq 0$ i.e., $w-u \succeq 0$ i.e., $u \preceq w$. By (i), either
$u-v \succeq 0$ or $u-v \preceq 0$.
Note: Similarly, \leq is also reflexive, transitive, antisymmetric \& total on F . Observe also that all subsequent propositions hold true if we replace $\mathrm{V}, \prec, \succ, \prec$ and \succ by F, \leq, \geq, < and $>$ respectively.

Remark: A relation which is reflexive, transitive, antisymmetric and total is called linear order. Thus V is a linearly ordered vector space over the linearly ordered field F.

Proposition2.2 (a) If $\lambda \leq 0$ and $u \succ 0$ then $\lambda u \prec$ (b) If $\lambda \geq 0$ and $\mathrm{u} \preceq 0$ then $\lambda \mathrm{u} \preceq$ (c) If $\lambda \leq 0$ and $\mathrm{u} \preceq 0$ then $\lambda u \succ 0$

Proof (aWe know $\lambda \leq 0$ iff - $\lambda \geq 0$. By
(iv), $-\lambda \mathrm{u} \succ 0$. Therefore $\lambda \mathrm{u} \prec 0$
(b) As, $u \preceq 0$ iff $-\mathrm{u} \succeq 0$ we get $\lambda(-\mathrm{u})=\lambda u \succeq 0$ by (iv) i.e., $\lambda u \prec 0$.
(c) We have $\lambda \leq 0$ iff $-\lambda \geq 0$ and $u \preceq 0$ iff $-u \succ 0$

This give by (iv), $(-\lambda)(-\mathrm{u}) \succ 0<=>\lambda_{(-\mathrm{u})} \prec 0<=>\lambda_{\mathrm{u}} \succ 0$.
Note: We know that $1+(-1)=0$. Multiply by (-1) on both side to get
$(-1) \cdot 1+(-1) \cdot(-1)=0$
$=>-1+(-1)^{2}=0[\because 1$ is multiplicative identity)
$\Rightarrow \quad(-1)^{2}=1 \quad[\because 1$ is additive identity of -1$]$
We define two new relations:

1. $\mathrm{v} \succ \mathrm{u}$ iff $\mathrm{u} \prec \mathrm{v}$ iff ($\mathrm{u} \preceq \mathrm{v}$ and $\mathrm{u} \neq \mathrm{v}$)
2. $\mu>\lambda$ iff $\lambda<\mu$ iff $(\lambda \leq \mu$ and $\lambda \neq \mu)$

Proposition 2.3: $1>0$
Proof: Suppose $1<0$. This means $1 \leq 0$ and $1 \neq 0$. Thus $-1 \geq$

0 . By (viii),
$-(-1)=(-1)(-1) \geq 0$. Note that $-(-1)$ is the additive inverse of (-1) which is 1 Therefore $1 \geq 0$. But $1 \neq 0$. Hence $1>0$, which is contradiction.

Proposition 2.4: (a) If $\lambda>0$ then $\lambda^{-1}>0$ (b) If $\lambda<0$ then $\lambda-1<0$

Proof: Suppose $\lambda^{-1}<0$. Then $-\lambda^{-1}>0$. This gives $-\lambda$
${ }^{-1}=-1>0$ which is not true . Similarly we can prove (b) .
Remark: For $\mathrm{F}=\mathrm{R} \& \mathrm{~V}=\mathrm{R}^{N}$, we can see that the standard ordering of real numbers \leq and the lexicographic ordering of R^{N} denoted by \preceq satisfy all the above required properties (i) to (viii). That is R^{N} is a linearly ordered vector space over the linear ordered field R.

REFERENCES

