Research Paper

Engineering

Fundamental of Algebra

* Kiran Singh Bais

* Prestige Institute of Engg.&Science, Indore(M.P.)

ABSTRACT

In this paper we discuss basic properties of algebra for fitting we divided this paper in two sections, section 1 deals with the definitions and section 2 related two properties of algebra.

Keywords:

1. Introduction:

Definition: Let $u \in \mathbb{R}^N$ be an N-component column vector.

We say that u is lexicographically positive and write u \succ 0

iff the first non zero component of u is positive. Next, we say u is **lexicographically negative**, u \prec 0 iff –u is lexicograph-

ically positive .Further, we say u is **lexicographically non-negative** ($u \geq 0$) or nonpositive (u < 0) iff ($u \geq 0$ or u = 0),or

(u \prec 0 or u = 0) respectively .**Notations:** For, u, v $\in \mathbb{R}^{N}$, we

denote

- (1) u ≻ v <=> u v ≻ 0
- (2) u ≺ v <=> u v ≺ 0
- (3) u ≻ v <=> u v ≻ 0
- (4) u ≺ v <=> u v ≺ 0

We shall not assume the commutativity of the field F. F may be skew. Let V be vector space over F. Suppose a binary relation \prec be given on V and a binary relation \leq be given of F.

Define u \succ v iff v \prec u. From (3), it follows that u \succ 0 iff -u \prec

0. Further, define $\lambda \ge \mu$ iff $\mu \le \lambda$ iff $\lambda - \mu \ge 0$. Then it

also follows that $\lambda \ge 0$ iff - $\lambda \le 0$ also $\lambda \le 0$ iff - $\lambda \ge 0$.

We assume that following statements are true for u, v $\,\in\,$ V,

$$\lambda, \mu \in F.$$
(i) $u \succeq 0 \lor u \preceq 0$
(ii) $u \succeq 0 \land u \preceq 0 \Longrightarrow u = 0$
(iii) $u \succeq 0 \land v \succeq 0 \Rightarrow u = 0$
(iv) $\lambda \ge 0 \land u \succeq 0 \Rightarrow \lambda u \succeq 0$ and
(v) $\lambda \ge 0 \lor \lambda \le 0$
(vi) $\lambda \ge 0 \land \lambda \le 0 \Rightarrow \lambda = 0$
(vi) $\lambda \ge 0 \land \mu \ge 0 \Rightarrow \lambda + \mu \ge 0$

(viii) $\lambda \ge 0 \land \mu \ge 0 \Rightarrow \mu \ge 0$

Definition: A cone C in a vector space is a set such that $u \in C$, $\lambda \in F$, $\lambda > 0$ implies $\lambda u \in C$. **Observation:** The set $\{u \in V/u \succeq 0\}$ is a cone in V and the set $\{\lambda \in F/\lambda \ge 0\}$ is a cone in F.

Proposition 2.1 The relation \preceq is reflexive, transitive, antisymmetric and total (u \prec v or u \succ v).

Proof: We have u - u = 0. Hence $u \leq u$. Next, if $u \leq v$ and $u \geq v$ then $u - v \leq 0$ and $u - v \geq 0$. By (ii) u - v = 0. i.e. u = v. For $u \leq v$, $v \leq w$, we have $v - u \geq 0$, $w - v \geq 0$. By (iii), $(v - u) + (w - v) \geq 0$ i.e., $w - u \geq 0$ i.e., $u \leq w$. By (i), either

 $u - v \succeq 0$ or $u - v \preceq 0$.

Note: Similarly, \leq is also reflexive, transitive, antisymmetric & total on F. Observe also that all subsequent propositions hold true if we replace V, \prec , \succ , \prec and \succ by F, \leq , \geq , < and >

respectively.

 $\lambda_{\mu} \prec 0$

Remark: A relation which is reflexive, transitive, antisymmetric and total is called linear order. Thus V is a linearly ordered vector space over the linearly ordered field F.

Proposition 2.2 (a) If $\lambda \leq 0$ and $u \succ 0$ then $\lambda u \prec$ (b) If $\lambda \geq 0$ and $u \preceq 0$ then $\lambda u \preceq$ (c) If $\lambda \leq 0$ and $u \preceq 0$ then $\lambda u \succ 0$ **Proof** (aWe know $\lambda \leq 0$ iff - $\lambda \geq 0$. By (iv), $-\lambda u \succ 0$. Therefore $\lambda u \prec 0$ (b) As, $u \prec 0$ iff - $u \succ 0$ we get λ (-u) = $\lambda u \succ 0$ by (iv) i.e.,

Volume : 2 | Issue : 3 | March 2013

(c) We have $\lambda \leq 0$ iff $-\lambda \geq 0$ and $u \leq 0$ iff $-u \succ 0$

This give by (iv), (- λ) (-u) \succ 0 <=> λ (-u) \prec 0<=> λ u \succ 0.

Note: We know that 1+ (-1) = 0. Multiply by (-1) on both side to get

(-1).1 + (-1). (-1) = 0

 $= -1 + (-1)^2 = 0[$ 1 is multiplicative identity)

=> $(-1)^2 = 1$ [: 1 is additive identity of -1]

We define two new relations:

1. $v \succ u$ iff $u \prec v$ iff $(u \preceq v \text{ and } u \neq v)$

2. $\mu > \lambda$ iff $\lambda < \mu$ iff $(\lambda \le \mu \text{ and } \lambda \ne \mu)$

Proposition 2.3: 1 > 0

Proof: Suppose 1 < 0. This means $1 \le 0$ and $1 \ne 0$. Thus $-1 \ge 0$

0.By (viii),

-(-1) = (-1) (-1) \geq 0.Note that -(-1) is the additive inverse of (-1) which is 1 Therefore 1 \geq 0. But 1 \neq 0.Hence 1 > 0, which is

contradiction.

Proposition 2.4: (a) If $\lambda > 0$ then $\lambda^{-1} > 0$ (b) If $\lambda < 0$ then $\lambda^{-1} < 0$

Proof: Suppose $\lambda^{-1} < 0$. Then $-\lambda^{-1} > 0$. This gives $-\lambda$

 $^{-1}$ =-1 > 0 which is not true .Similarly we can prove (b) .

Remark: For $F = R \& V = R^{N}$, we can see that the standard

ordering of real numbers \leq and the lexicographic ordering of R N denoted by \preceq satisfy all the above required properties

(i) to (viii). That is R^N is a linearly ordered vector space over the linear ordered field R .

REFERENCES

1. David Bartle, Farkas' lemma, other theorems of the alternative, and linear programming in infinite-dimensional spaces: a purely linear-algebraic approach, Linear and Multilinear Algebra, Vol. 55(4), 2007, 327-353.] 2. David Bartle, A short algebraic proof | of the Farkas' lemma, SIAM journal | of optimization, vol. 19 (1), 2008, | 234-239.] 3. Achiya Dax, An elementary proof of Farkas' lemma, SIAM Review, Vol. 39 (3), 1997, 503-507.] 4. Broyden C.G., On theorems of the alternative, optimization methods and software, Vol. 16 (1), 2001, 101-111 | 5. Bazaraa M.S., Sherali H.D., | ShettyC.M.NonlinearProgramming, John-Wiley & Sons Inc., (c) 2004. | 6. Bazaraa M.S., Jarvis J.J., Sherali | H.D., Linear programming & network flows, John-wiley & sons | Inc. (c) 2005.]