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ABSTRACT

The study of Ring and Distributive lattice is equivalent to the study of the corresponding algebra, because the Ring has a 

property of Group and similarly Modular lattice is a special case of Distributive lattice and one can be obtained from other by 

putting further algebraic approach.So in this paper we discuses the important properties of Ring.
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1. Introduction:The great Mathematician Brian C. Hall [18]
provedmany important   properties in group and similarly in 
[15] Ralph Freese and Ralph Mckenzie have one important 
property of Modular lattice. So it is possible to give the con-
cise characterizations of algebra in terms of   Ring and Dis-
tributive lattice.  The study of Ring and Distributive lattice is 
equivalent to the study of the corresponding algebra, because 
the Ring has a property of Group and similarly Modular lattice 
is a special case of Distributive lattice and one can be ob-
tained from other by putting further algebraic approach.First 
we give some essentials knowledge of Ring theory.

1.1 Ring:  If R is any non –empty set, and +, ∗  are two bi-

nary operations define on this set, then an algebraic structure 
(R, +,∗ ) is called a ring if it satisfies following properties:

i   (R, +) is a group.
ii   (R,∗ ) is a semi group.

iii  An operation∗ is a distributive over the operation +( addi-

tion ).

1.2 Commutative Ring:  A Ring (R, +,∗ ) 

is called Commutative Ring if it 

satisfies Commutative property with respect to ∗  operation.i.e. 

a ∗ b=b∗ a for all values in R.

1. 3 Sub -Ring:  A non empty subset of Ring, which satisfy all 
theproperties of Ring is called a sub- Ring.

1.4Integral domain: A Ring (R, +,∗ )   iscalled an integral 

domain if it satisfy following Properties;

i. It is commutative ring  i.e. a ∗ b=b∗ a    for all values in R.

ii.It is ring with unity i.e.there exist an element 1 in R  such that 
a∗ 1=1∗ a=a generally  it is denoted by( I,+, ∗ ).

1. 5  Field : A Ring (R,+, ∗ )   is called a Field  if it satisfy fol-

lowing Properties

i. It is commutative ring  i.e. a ∗ b=b∗ a    for all values in R.

ii. It is ring with unity i.e. there exist an element 1 in R  such 
that a∗ 1=1∗ a=a

iii. It has inverse for second operation i.e. with  respect to op-
eration∗ .i.e. if a in R then there exist b in R such that a∗ b=b

∗  a=1.

Then a is an inverse of b and b is inverse of a.

1.6Centre of a group:    The centre of a group G is the set of 

all 
Gg ∈

 such that g.h=h.g for all Gh∈  

7  Centre of Field: If F is a field ,then the set of all  Ff ∈  

such that  f.h=h.f for all values of  h in F.

2. Theorems: 
2. 1 Theorem : If R be a commutative ring and let n be any 
positive integer then R[n]={ }0: =∈ nxRx  is a sub ring 

of R. 

Proof :  Consider   R[n] = {
}0: =∈ nxRx

.It is given that R 
is a commutative ring. And we  have to show that  R[n] is a 
sub ring.

Closure property:  Let ][, 21 nRxx ∈ , a

][, 21 nRxx ∈  therefore 0,0 21 == nxnx

][.0).(0 212121 nRxxxxnnxnx ∈+⇒=+⇒=+

Existence of an Identity:As 0.n=0 ][0 nR∈⇒ which is 

an identity element.

 Existence of an Inverse: Let ][, 21 nRxx ∈

as R∈0  therefore by closure property 121 0. xxx ⇒=+  is an 

inverse   of 2x  and 2x  is an inverse  of 1x .

2.2 Theorem: Let I be an Ideal   of commutative Ring R and  
suppose  that R/I   is   Cyclic of finite order q. If  ., tIR =  then  

.,' tIR =    

Proof: As R is a Commutative ring.
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taataatIR 1),(:., −=→Φ=   will be endomorphism. And,   

I , t are normalizer of  tI , . So  R is also  normalizer of   tI ,  

as R is   Commutative ring and I is an  Ideal therefore R/I will 
be also an abelian .which  implies  tI , =R’.

2.3 Theorem: The centre of a Field is an Integral .

Proof: Let C(F) is a centre of integral domain  . i.e C (F) = {f:  
f.h=h.f , f+h=h+f   for all  Fh∈  } First we prove ( C(F),+) is a 

group.

Closure property:Let   )(, 21 FCff ∈  i.e.  

2211 , fhhffhhf +=++=+  

where f
1
, f

2 
are arbitrary elements in C(F).

Consider   (f
1+

f
2
)+h  = f

1+
(f

2+
h)    (Associative  in F)

 f
1+

(h+f
2
)  

 (f
1+

h)+f
2
  

 (h+f
1)+

f
2
  

 h+(f
1+

f
2
 ) 

 
Fff ∈+ 21

closure property is satisfied.

Existence of an identity element: C(F) is a subset of  F. as  
0+h=h+0  where F∈0  Therefore    )(0 FC∈

Existence of an  inverse : As   )(0 FC∈

therefore by closure property a+b=0  =>  a is

an inverse of  b  and b is an  inverse  of   a.by 

the above properties it is clear that (C(F),+) is 
a group.
Closure property: Let   )(, 21 FCff ∈  i.e. 

2211 , hfhfhfhf ==  

Where f
1
, f

2 
are arbitrary elements in C(F) Consider   (f

1
f
2
)h  = 

f
1
(f

2
h)   (associative  in F)

 f
1
(hf

2
)  

 (f
1
h)f

2
  

 (hf
1)
f
2
  

 h(f
1
f
2
 ) 

 f
1
f
2
 

 f
1
f
2
 

 Fff ∈21

closure property is satisfied.

Commutative Property: As C (F) is a subset of  F, and as 
Commutative Property satisfied in F. Therefore this satisfy  
also in  C(F).

Existence of unit element:  F∈1   and as 1.h=h.1=>  )(1 FC∈

As all above properties are satisfied therefore  we can say 
that C(F) is an Integral domain.

2.4 Theorem: If A is a Distributive lattice and let F be an n-
frame in conA,then   

FFF 01,1 ≤  

Proof : As we know that [15] If  V is a variety of algebras with 
distributive Congruence then these lattices have an additional 
operation known  as  the  commutator, this is  denoted ].,[ βα
If conAandandVA i ∈∈ ββαβα ,,,,].,[   then i.      βαβα ∧≤],[  

ii.      ],[],[ αββα =

iii.     
],[][ ii βαβα ∨=∨

Let     nF aa ∨∨= ........1 1   by using  above ][0]1,1[ , iiFFF aa∨∨≤

but 

as ijji caa ∨≤   .We have

Fijjiijijiijijiijjiii caacaaacaaacaaaa 0)()()(],[],[],[],[ =∨∧=∧∨∧≤∨=∨≤

hence 
FFF 01,1 ≤  

2.5 Theorem:  The automorphism of  a lattices form a 
Distributive   lattices.

Proof: Let f: D D→  be an automorphism .(where D is a Lat-

tice).Such that f(a)=a     for all values of a in D.

It is evident, f is well define, one-one and onto. Let f,g and h 
are three  automorphism on Distributive latticeNow, we define 

 f gfg =∧  i.e. Intersection of f and g.

 f g∨  =f. i.e. fg= {xy: x gyf ∈∈ , }As, any Lattice satisfy Dis-

tributive inequality.i.e. We have, f g(∨ h) )()( hfgf ∨∨⊆   

{ We Define  ⊆=≤  }       …(2.5.1) 

Now , we have to prove ⊆∨∨ )()( hfgf  f g(∨ h)

Let, a )()( hfgf ∨∨∈ 

⇒   a gf ∨∈  and  a hf ∨∈  

⇒   a ∈   fg  and  a∈  fh

⇒   a =bc∈ fg and  a=bc∈ fh

⇒   b∈  f,c∈  g and b∈ f, c∈h

⇒   b∈ f ,c∈g h  

⇒   bc∈ f )( hg ∨

⇒   a=bc ∈ f )( hg ∨  

⇒ (f )g∨ )()( hgLhf  ∨⊆∨                       …(2.5.2)

From Equation (6.2.5.1) and (6.2.5.2)                                                  

(f )g∨ )()( hgfhf  ∨=∨  

Therefore it is clear that automorphism on a lattice form a 
Distributive lattice.

2.6 Theorem: If  L and L’ be two lattices ,and Ψ is a homo-

morphism of L into L’and M is congruence ≈  ,then kernel of 

Ψ  is also a  kernel of  M.

Proof: It is given that L and L’ be two lattices. and Ψ :L 'L→   

be homomorphism.Then kerΨ =set of all those elements  
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whose image is  an identity  element.i.e. kerΨ ={x: Ψ (x)= an 
identity element }

                          

2.7 Theorem: An Integral domain which is not relatively 
complemented has a homomorphic image isomorphic to the 
Chain of three elements.

Proof : Let  I is an Integral domain  with the property A. And R 
is not relatively  complemented, and let I  has a  homo-mor-
phic image  isomorphic to the chain of three elements. As I 
has an HI property [1], in this case the chain of three elements 
also has the property A.  This is contradiction and let an Inte-
gral domain is not relatively complemented , then   there three 
elements a,b,c   exist in R  such  that b<c<a   and c has no  
relatively   complemented in   the interval  [b a] .Let consider 
the dual ideal }:{ cdadD ∪≤= and the dual ideal E=[c) D∪  
those elements of E which are included in c are in the form of 
c .d∩  b  is not element of E, because if not b= c .d∩  for all 

And so )( dacbab ∩∩=∩=  would hold. It is clear that 

Dda ∈∩  but we have  if   thenEb ,∈  Dda ∈∩ . , hence 

)( daca ∩∪≤  thus in effect  of c<a we get a= )( dac ∩∪

therefore it is clear that da∩  is a relative complement of  

c.Again we get contradiction,so by Stone ‘s theorem we  con-
sider prime ideal and can prove  this as in [1], and finally we  
conclude  the three elements of  chain  will be   1,,0 α   and 0 

is a least and 1 is  Greatest element of chain.

2.7.1Corollary: Any finite Field which is not relatively comple-
mented  has a  homomorphic  image isomorphic to the Chain 
of three  elements.

Proof : By the definition of Field it is trivial.

2.8 Theorem: If in a Ring [8] there is a one-one correspond-
ence between congruence relations and Ideals then this ring 
is a relatively complemented ring.

Proof : Let   R is a ring and there is a one-one correspond-
ence between congruence relations and ideals of this.And 
we have to prove this ring is relatively complemented. As we 
know that an ideal of of the ring is the kernel of precisely one 
homomorphism. 

Let R’ be a homomorphic image   of R ,and I’ an ideal in R’. if 
I’ is the kernel of more than one homomorphism, then its com-
plete inverse image has the same  Property .i.e. this has HI 
property the chain of three  elements does not have the above 
property, because the ideal (0] is a  Congruence class under 
the identical congruence relation. And in which ,0,1 ≠≡ αα

hence it is clear that it will be  relatively complemented.

2.8.1 Corollary: If in an Integral domain there is a one-one 
correspondence between congruence relations and ideals 
then this Integral domain is a  relatively complemented.

2.9 Theorem:  Let A be an HI property [9] of Ring [4]. If the 
semi group (with respect to Operation) of three  elements and 
have the  Property A,  then this Ring has  multiplicative in-
verse.

Proof: Let R is a ring  with HI property and the Semi group 

Mementidentityelementidentityel

ementidentityelxxementidentityelxx

ementidentityelxxementidentityel

=Θ=⇒

≈=Ψ=Ψ⇒

=Ψ=Ψ

−

−

)(][

}/{)()(/{

})(/{)(

1

1

(with respect  to  . operation) of three   elements  and have 
the  property A, but let it has no multiplicative inverse.Con-
sider the semi group which contains three elements  a,b,c 
such that  b<c<a .  As it has no multiplicative inverse. that 
mean c has no multiplicative inverse.Let us consider the Ideal 
D ={d;a }cd +≤  and the dual Ideal E=[c) .D+ .D∪ those 

elements of E which are  included in c are in the form of 
bdc .∩  is not element of E, because if not b= c ..d  for all 

Dd ∈ .And so  )..(. dacbab ==  would hold. therefore it is 

clear that a is an identity element of this semi group. But as  
this is a  semi group .therefore by closure property b.c=a that 
means c  is an inverse  of b and b is an inverse of a. This is 
contradiction. Therefore it is clear that our assumption is 
wrong. It means let A be an HI property [1] of Ring. If the semi 
group(with respect  to  . operation) of three   elements and 
have the  property  A  then  this Ring has  multiplicative in-
verse.

2.10 Theorem: If X be a subset in Distributive lattice L with 0. 
Then a map LX →Θ ]2[:  is a Banaschewski measure then

),()( xyzyxy ∧Θ∧=Θ  for all zyx ≤≤

Proof: Let Θ  is a Banaschewski measure on X.and also let  

zyx ≤≤ in X .And )()(: xyzyv ∧Θ∧= .obviously 

0=∧ vx   Furthermore, as yx ≤  and by the definition of  

Distributive lattice yzyxxzxyvx =∧=∨Θ∨∧=∧ ))()((

.And as vxy ≤Θ  and L  is Distributive lattice therefore

xyv Θ= therefore  )()( xyzyxy ∧Θ∧=Θ

2.11 Theorem:  Let L is a is Distributive lattice with 
zero,let Lbe ∈, such that 1=⊕ be . And let [20] .bLX ↓⊆

if there exist an L- valued  Banaschewski Function on 
}:{: XxxeXe ∈⊕=⊕  ,then there  exist a )( bL ↓ -val-

ued[20]  Banaschewski  function  on X.

Proof : Let  Θ  is a Banaschewski  measure on Xe⊕ .Then 

we have ))]()(([:' ⊕Θ⊕∨∧=Θ eyeebxy It is clear that 

'Θ is .bL ↓ -valued,and isotone in y and antitone  in X.As L 

is Distributive lattice therefore 0))]()(([ =⊕Θ⊕∨∧ xeyeex

As bx ≤ then 0)'( =Θ∧ xyx And )()(([)'( xeyeexbxyx ⊕Θ⊕∨∨∧=Θ∨

As L is Distributive lattice therefore )'( xyx Θ∨ = )'( yeb ∨∧  

))( ybeb ∧∨∧ = y Hence )'( xyx Θ∨  = y

3.Pseudovariety and Redical class:

Here we define pseudovariety and Redical class for Distribu-
tive lattice as follow: 

3.1 Pseudovariety (in Distributive lattice):  A non-empty 
class of    finite Distributive lattice closed under divisors and 
finite direct product is called (in Distributive lattice.)

3.2 Redical class(in Distributive Lattice):  A redical class 
of finite   Distributive lattice  is a  Subclass  with the following 
properties:

I. It is closed under homo-morphic images.

II. If D is a Distributive lattice and there are three Normal  
subgroups which belong to this class , and as the product of 
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these Normal subgroups is also a Normal subgroups. There-
fore  product of these Normal subgroups also  belongs to this 
class III  for each Lattice this class is unique.

We define pseudovariety and Redical class for Ring as follow: 

3.3 Pseudovariety (in Ring):  A non-empty class of  finite 
Ring closed under divisors And  finite direct product is called  
(in Ring.)

3.4  Redical class(in Ring):  A redical class of finite Ring is 
a  subclass   with the  following properties:I. It is closed under 
homo-morphic images.II. If R  is a Ring and there are two Nor-
mal subgroups which  belong to this class , and as the prod-
uct of these Normal  subgroups is also a Normal subgroups. 
Therefore product of these  Normal subgroups  also  belongs 
to this class I. For each Lattice this class is unique.

3.5 Theorem : If R
1
 and R

2 
are pseudovartites of Ring and let 

R be a finite  Ring, then

i.   R 

ii.  

Proof:  Let R 21.RR∈  , and we have to prove 2
1

R
R

R
R

∈ As R
1
 

and R
2  

are pseudovartites of Ring. Therefore by the  definition 
of pseudovartites 21..RR is also a pseudovartites .

Let 21..RR =K.and  as 21.RRR∈  then  21..RR =k must have  

normal subgroups. And 1RK ∈  and 2RK
R ∈ .But we know 

that  by the definition of   Radical 
1R

RK ⊆ ,and 

therefore
2

1

R
R

R
R

R ∈ . 

Let  I
1
 and 

 
I
2 
 are two Ideals  of R and 21.RRR∈ Suppose that 

B
i
= 1

)( RiI   As R
1
 pseudovariety  then  121. RBB ∈  therefore 

221
11

. R
R

RRR
R

∈⇒∈

21

21

1 RR

RR

R
R

R

R





=

2121 .RRBB ∈ Now we will prove 22121 /. RBBII ∈ We have

( )( )211221212121 /.//. BBBIBBBIBBII = ,but  ( )2121 / BBBI  

is a ideal of 2121 /. BBII  and a homo-morphic image of 

211 /. RBI ∈  and similarly for other factor. The quotient 

22121 /. RBBII ∈  ,therefore this pseudovarity is a fitting 

class.

3.5.1 Corollary: F
1
 and F

2 
are pseudovartites of Field [19] and 

let R be a  finite Field, then

F 221
11

. F
F

FFF
F

∈=∈      
21

1

1 FF

F

F
F

F

F





=  

Proof: As we know that   Field has no proper Ideals (it has 
only F and  {0})Therefore it is trivial.

3.6 Theorem:  If V be an extension –closed pseudovariety  of  
Distributive  lattice   D  containing Ab. If  D is a finite Lattice 

,VDa∈ , and b D∈ ,then  Vba ∈, .

Proof: Suppose that baH ,=   as H is a cyclic extension of 

Normal subgroups N=
VDH ∩ [1].  So above will true  

for Distributive  lattice. 

Theorem 3.7: V  be an extension – closed pseudovariety  of  
Distributive  lattice D containing Ab .  And if  V-radical admits 
a binary  characterization  then  },,:{ VbaDbDaDV ∈∈∀∈=

Proof : Let U is a binary characterization of the V-radical 
and let ., Dba ∈  Consider the Subgroup baH b ,= .if 

,VDa∈ then VH b ∈ (by above Theorem.) .Now, if VH b ∈  

Db∈∀ , then U(a,b)=1 for every Uu∈ . As 
VSU )(Ω⊆ . And as 

U is a characterization therefore ,VDa∈  which implies that 

},,:{ VbaDbDaDV ∈∈∀∈=
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