
Volume : 3 | Issue : 4 | May 2013 ISSN - 2250-1991

PARIPEX - INDIAN JOURNAL OF RESEARCH X 33

ABSTRACT

An efficient numerical integration algorithm for single layer Raster Cellular Neural Networks (CNN) simulator is presented
in this paper. The simulator is capable of performing CNN simulations for any size of input image, thus a powerful tool for
researchers investigating potential applications of CNN. Explicit Runge{Kutta (RK) methods in the form of pairs of orders p (p
-1) provide an attractive means for the solution of initial value problems of first-order differential equations. Most existing RK
formulas (single methods as well as pairs) use the minimal number of stages required for achieving a prescribed order. In this
article we shall study, in terms of efficiency and reliability, RK pairs of orders p (q). This paper reports an efficient algorithm
exploiting the latency properties of Cellular Neural Networks along with numerical integration techniques RK4(2), RK4(3), and
RK6(4); simulation results and comparisons are also presented.

Research Paper

Optimizing Single-Layer Raster Cellular Neural

Network simulator using simulated Annealing

technique and RK 8(6)

* O.H. Abdelwahed ** M. El-Sayed Wahed

Computer Science

tt
*Assistant Department of Computer Science, Faculty of Computers and Information

Suez Canal University, EGYPT
tt

** Associate Professor, Department of Computer Science, Faculty of Computers and

Information, Suez Canal University, EGYPT

t
Keywords : single-layer Cellular neural networks, numerical integration algorithms, RK4(2), 4(3),

and RK6(4)

1 Introduction
Explicit RK methods in the form of pairs of embedded meth-
ods are currently considered one of the most efficient means
for solving the nonstiff initial value problem

An RK method is characterized by the triple A, b, c (where
) and is said to be of algebraic order (or simply
order) p, whenever the coefficients in A, b, c satisfy a system
of order conditions, which are in one-to-one correspondence
with the set of (rooted) trees of orders not exceeding p (see
Butcher [11], Hairer, N¨orsett, and Wanner [12]). RK pairs are
characterized by two RK methods of orders p (q), (p > q) with
distinct vectors of weights b, ^b, which, however, share the
same function evaluations (A, c are the same for both meth-
ods).

In practice, the solution of the order conditions for the con-
struction of RK methods or pairs involves the application of
a suitable set of simplifying assumptions (see, for example,
[11], and for more up-to-date information see [13] and the
classification and relevant discussion therein). Although the
analysis seems to be complicated (especially for higher-order
methods), in most cases (see [15], [14], and [13]) efficient and
easily implementable algorithms have been obtained. These
algorithms are characterized by a number of free parameters
and define certain families of solution of the respective order
conditions.

CNN is a hybrid of Cellular Automata and Neural Networks
(hence the name Cellular Neural Networks), and it shares the
best features of both worlds. Like Neural Networks, its con-
tinuous time feature allows real-time signal processing, and
like Cellular Automata, its local interconnection feature makes
VLSI realization feasible. Its grid-like structure is suitable for

() ()
[])1(:;,

;;

00

000

RRyx

yxy

mm
Rfx

yyxf

→×∈

==

sTss RCBRA ∈∈ × ,,

the solution of a high order system of first order non-linear
differential equations on-line and in real-time.

The basic circuit unit of CNN is called a [2]. It contains linear
and nonlinear circuit elements. Any cell, C(i,j), is connected
only to its neighbor cells, i.e. adjacent cells interact directly
with each other. This intuitive concept is called neighborhood
and is denoted as N(i,j). Cells not in the immediate neighbor-
hood have indirect effect because of the propagation effects
of the dynamics of the network. Each cell has a state x input
U, and output y. The state of each cell is bounded for all time
t > U and, after the transient has settled down, a cellular neu-
ral network always approaches one of its stable equilibrium
points. This last fact is relevant because it implies that the
circuit will not oscillate. The dynamics of a CNN has both out-
put feedback (A) and input control (B) mechanisms. The first
order nonlinear differential equation defining the dynamics of
a cellular neural network cell can be written as follows:

where xij is the state of cell C(i,j),
()0xij is the initial condition

of the cell, C is a linear capacitor, R is a linear resistor, I is an
independent current source, A(I,J;k, 1)ykl and B{i,j;k,l)ukl are
voltage controlled current Sources for all cells C(k,l) in the
neighborhood N(ij) of cell C(ij), and yij represents the output
equation.

Notice from the summation operators that each cell is affect-
ed by its neighbor cells. A(.) acts on the output of neighboring
cells and is referred to as the feedback operator. B(.) in turn
affects the input control and is referred to as the control oper-
ator. Spe- cific entry values of matrices A(.) and B(.) are appli-
cation dependent, are space invariant and are called cloning

()
() ()

() ()
()

()
() ()

() () ()())2(11
2

1

,;,

,;,
1

,,

,,

−−+=

++−=

∑

∑

∈

∈

ttt

lkjiB

tlkjiAt
Rdt

td
C

xxy

u

yx
x

ijijij

kl
jiNlkC

kl
jiNlkC

ij

ij

Volume : 3 | Issue : 4 | May 2013 ISSN - 2250-1991

34 X PARIPEX - INDIAN JOURNAL OF RESEARCH

templates. A current bias Z and the cloning templates deter-
mine the transient behavior of the cellular nonlinear network.

CNNs have as input a set of analog values and its program-
mability is done via cloning templates.Thus, programmability
is one of the most attractive properties of CNNs, but how to
choose the optimal network and how to program it to per-
form a given task are still topics under investigation. This is
the reason why there is a need for behavioral CNN simulator
capable of helping investigators design and manipulate clon-
ing templates (“programming”). Existent tools are not meant
to deal with a significant number of pixels typical in common
image processing applications [5]. The simulator presented
here not only satisfies this need, but it also can be used for
testing CNN hardware implementations. M. El-Sayed Wahed
and O.H. Abdel wahed[1] introduced an efficient numerical
integration algorithm for Single-Layer Raster Cellular Neu-
ral Networks Simulator. In this paper, we consider the same
problem since we optimize their solution by using the optimi-
zation technique, simulated annealing.

2 Behavioral Simulation
Recall that equation (1) is space invariant, which means that
A(i,j;k,l) = A(i-k,j-1) and B(i,j;k,l) = B(i,k;,j,l) for all i,j,kl.

Therefore, the solution of the system of difference equations
can be seen as a convolution process between the image
and the CNN processors. The basic approach is to imagine
a square subimage area centered at (x,y), with the subimage
being the same size of the templates involved in the simula-
tion. The center of this subimage is then moved from pixel
to pixel starting, say, at the top left comer and applying the A
and B templates at each location (x,y) to solve the differential
equation. This procedure is repeated for each time step, for
all the pixels. An instance of this image scanning-processing
is referred to as an “iteration”. The processing stops when it is
found that the states of all CNN processors have converged
to steady-state values[2] and the outputs of its neighbor cells
are saturated, e.g. they have a +1 value.

This whole simulating approach is referred to as raster
simulation. A simplified algorithm is presented below for this
approach. The part where the integration is involved (i.e.
calculation of the next state) is explained in the Numerical
Integration Methods section.

In the following two subsections we will discuss simulated
annealing algorithm and the mathematical modeling used in
simulated annealing and our proposed simulator.

2.1 The Simulated Annealing Algorithm
In the early 1980s Kirkpatrick et al. (1983) and independently
Cemy (1985)[7] introduced the concepts of annealing in com-
binatorial optimization. Originally these concepts were heavily
inspired by an analogy between the physical anneahng pro-
cess of solids and the problem of solving large combinatorial
optimization problems. Since this analogy is quite appealing
we use it here as a background for introducing simulated an-
nealing.In condensed matter physics, anneahng is known as
a thermal process for obtaining low energy states of a sohd in
a heat bath. The process consists of the following two steps:

• increase the temperature of the heat bath to a maximum
value at which the solid melts;

• decrease carefully the temperature of the heat bath until
the particles arrange themselves in the ground state of
the solid.

In the liquid phase, all particles arrange themselves random-
ly, whereas in the ground state of the solid, the particles are
arranged in a highly structured lattice, for which the corre-
sponding energy is minimal. The ground state of the solid is
obtained only if the maximum value of the temperature is suf-
ficiently high and the cooling is performed sufficiently slowly.
Otherwise, the solid will be frozen into a meta-stable state
rather than into the true ground state.

Metropolis et al.[7] introduced a simple algorithm for simulat-
ing the evolution of a solid in a heat bath to thermal equi-
librium. Their algorithm is based on Monte Carlo techniques
(Binder, 1978) and generates a sequence of states of the
solid in the following way.

Given a current state i of the solid with energy E
i
, then a sub-

sequent state j is generated by applying a perturbation mecha-
nism which transforms the current state into a next state by a
small distortion, for instance by displacement of a particle. The
energy of the next state is E

j
. If the energy difference, E

j
— E

i
,

is less than or equal to zero, the state j is accepted as the cur-
rent state. If the energy difference is greater than zero, then the
state j is accepted with a probability given by

where T denotes the temperature of the heat bath and
kB is a physical constant called the Boltzmann constant.
The acceptance rule described above is known as the
Metropolis criterion and the algorithm that goes with it is
known as the Metropolis algorithm. It is known that, if the
lowering of the temperature is done sufficiently slowly, the
solid can reach thermal equilibrium at each temperature.
In the Metropohs algorithm this is achieved by generat-
ing a large number of transitions at a given value of the
temperature. Thermal equilibrium is characterized by the
Boltzmann distribution, which gives the probability of the
solid of being in a state / with energy Ei at temperature T,
and which is given by

where X is a random variable denoting the current state
of the solid and the summation extends over all possible
states. As we indicate below, the Boltzmann distribution
plays an essential role in the analysis of the convergence
of simulated annealing. Returning to simulated anneal-
ing, the Metropolis algorithm can be used to generate a
sequence of solutions of a combinatorial optimization prob-
lem by assuming the following equivalences between a
physical many-particle system and a combinatorial optimi-
zation problem:

• solutions in the combinatorial optimization problem are
equivalent to states of the physical system;

• the cost of a solution is equivalent to the energy of a state.
 Furthermore, we introduce a control parameter which

plays the role of the temperature. Simulated annealing
can thus be viewed as an iteration of Metropolis algo-
rithms, executed at decreasing values of the control pa-
rameter.

We can now let go of the physical analogy and formulate
simulated annealing in terms of a local search algorithm. To
simplify the presentation, we assume, in the remainder of this
chapter, that we are dealing with a minimization problem. The
discussion easily translates to maximization problems. For an
instance (S, f) of a combinatorial optimization problem and
a neighborhood function .The meaning of the four functions
in the below procedure in fig. 2. is obvious: INITIALIZE com-
putes a start solution and initial values of the parameters c
and L; GENERATE selects a solution from the neighborhood
of the current solution; CALCULATE.LENGTH and CALCU-
LATE_CONTROL compute new values for the parameters L
and c, respectively.

As already mentioned, a typical feature of simulated anneal-
ing is that, besides accepting improvements in cost, it also
accepts deteriorations to a limited extent. Initially, at large
values of c, large deteriorations will be accepted; as c de-
creases, only smaller deteriorations will be accepted and, fi-
nally, as the value of c approaches 0, no deteriorations will be
accepted at all.

)3(exp 






 −

Tk

EE

B

ji

{ } ()
())4(

/exp

/exp

∑ −
−

==

j

Bi

Bi

T
TkE

TkE
iXP

Volume : 3 | Issue : 4 | May 2013 ISSN - 2250-1991

PARIPEX - INDIAN JOURNAL OF RESEARCH X 35

The below is the simulated annealing algorithm:

procedure SIMULATED ANNEALING;
begin
INITIALIZE (istart, Co, Lo);
k:=0;
repeat
for / := 1 to L

k
 do

begin
GENERATE (j from S

i
);

i f f(j) ≤ f(i) then i := j

else

if exp







 −

kc

jfif)()(

> random[0, 1) then i := j
end;
k:= k + 1;
CALCULATE_LENGTH (Lk);
CALCULATE_CONTROL(ck);
until stopcriterion
end;

2.2 The Mathematical Model and the proposed simulator
Simulated annealing can be mathematically modeled by
means of Markov chains. In this model, we view simulated an-
nealing as a process in which a sequence of Markov chains is
generated, one for each value of the control parameter. Each
chain consists of a sequence of trials, where the outcomes
of the trials correspond to solutions of the problem instance.

Let {S, f) be a problem instance, N a neighborhood function,
and X(k) a stochastic variable denoting the outcome of the kth
trial. Then the transition

probability at the ^th trial for each pair i, j € S of outcomes is
defined as

where G
ij
 (ck) denotes the generation probability, i.e. the prob-

ability of generating a solution j when being at solution i, and
G

ij
 (ck) denotes the acceptance probability, i.e. the probability

of accepting solution j , once it is generated from solution i.
The most frequently used choice for these probabilities is the

following :
G

ij
(ck) =

And
Aj(ck) =

For fixed values of c, the probabilities do not depend on k, in
which case the resulting Markov chain is time-independent or
homogeneous. Using the theory of Markov chains it is fairly
straightforward to show that, under the condition that the
neighborhoods are strongly connected—in which case the
Markov chain is irreducible and periodic—there exist a unique
stationary distribution of the outcomes. This distribution is the
probability distribution of the solutions after an infinite number
of trials.

The following is the Single-Layer or Raster CNN simula-
tion with Simulated Annealing:
Algorithm:
(Single-Layer or Raster CNN simulation with Simulated An-
nealing) Obtain the input image, initial conditions and tem-
plates from user;

()(){
()(){







=−

≠

==−==

∑
≠∈

jiifcAcG

jiifcAcG

ikxjkxpkpij

ilSt

kijkij

kijkij

,

1

})1()({)(

)6(
)()()/))()(exp((

)()(1





>−
≤

ifjfifcjfif

ifjfif

/* M,N = # of rows/columns of the image */

/* APPLY SIMULATED ANNEALING */
begin
INITIALIZE (i

start
, C

o
, L

o
);

k:=0;
repeat
for i := 1 to L

k
 do

begin
GENERATE (j from S

i
);

i f f(j) ≤ f(i) then i := j
else
if exp








 −

kc

jfif)()(

> random[0, 1) then i := j
end;
k:= k + 1;
CALCULATE_LENGTH (Lk);
CALCULATE_CONTROL(ck);
until stopcriterion
end;
/* Use the optimized parameters from the simulated anneal-
ing */
while (converged-cells < total # of cells) (
for (i=l; i<=M; i++)
for (j=l; j<=N; j++) (
if (convergence-flag[i] [i I)
/* calculation of the next state*/
continue; /* current cell already converged */

/* convergence criteria */

 {

{
convergence-flag[i][j] = 1;
converged-cells++ ;
}
} /* end for */
/* update the state values of the whole image*/
for (i=l; i<=M; i++)
for (j=l; j<=N; j++) (
if (convergence-flag[i][j]) continue;
X

ij
(t

n+1
) = X

ij
(t

n
);

}

#_of_iteration++;

) /* end while */

The raster approach implies that each pixel is mapped onto a
CNN processor. That is, we have an image processing func-
tion in the spatial domain that can be expressed as:

g(x,y) = T(f(x,y)) (7)

where f(.) is the input image, g(.) the processed image, and T
is an operator on f(.) defined over the neighborhood of (x,y).

3 Numerical Integration Methods
Three of the single-step numerical integration algorithms
used in the CNN behavioral simulator described here. They
are RK4(2), RK4(3), and RK6(4) algorithms.

3.1.1 Stepsize selection algorithm.
There are currently two widely used methods that have ap-
peared in the literature for changing the stepsize of p (q)-or-
der RK codes. The first is to apply the formula (see [9])

Where f
1
 is a safety factor and the new sought-after stepsize

Volume : 3 | Issue : 4 | May 2013 ISSN - 2250-1991

36 X PARIPEX - INDIAN JOURNAL OF RESEARCH

h
n+1

= x
n+1

 - x
n
 is predicted in terms of an estimate of the local

error EST
n
which is based on the approximation

 (9)

Assuming yy nn

^

,
 to be the pth-, qth-order approximate solu-

tions, respectively, at the previous grid point xn and TOL the
requested tolerance. If

,TOLEST n
≤

Then the computed solution yn+1 is accepted and the integra-
tion is carried out, otherwise(5) is reevaluated by substituting

ESTEST nn 1+
→

This methodology is termed the error per step (EPS) mode
(see Shampine [10]).

An alternative is to consider the same algorithm (5), but to
use, instead of (6), the approximation

 (10)

This is called error per unit step (EPUS) [10].

3.1.2 RK4(2) and RK4(3) at n = 4
According to [8], The equations of RK4(2) and RK4(3) are:

Therefore, the final integration is a weighted sum of the five
calculated derivates is given:

The difference between Rk4(2) and RK4(3) is the local trun-
cation error in the case of RK4(2) is given by using the RK(2)
i.e.

But local truncation error in the case of RK4(3) is given by
using the RK(3)i.e.

3.1.3 RK8(6) at n= 6
According to [2], The equations of RK 8(6) are:

,

^

yyEST nnn
−≈

,
h

yy
EST

n

n

n

n

∧

−
≅

Volume : 3 | Issue : 4 | May 2013 ISSN - 2250-1991

PARIPEX - INDIAN JOURNAL OF RESEARCH X 37

Therefore, the final integration is a weighted sum of the twelve
calculated derivates is given:

Where f(l.) is computed according to (1). There are many sin-
gle step methods available to us for this purpose. But, one
option worth considering is the combination of two methods
in solving for the solution. So we use Rk8(6) to make a very
efficient computer solving the problem the way it evaluates
the integral presented

method Mean Square Error Peak Signal to
Noise Ratio

MNormalized
Cross-Correlation

Average
Difference

Structural
Content

Maximum
Difference

Normalized
Absolute Error

RK4(2) 1.6661e+003 12.5551 0.9349 8.9551 1.3255 243 0.0710

RK4(3) 1.6990e+003 11.4449 0.9306 6.1449 1.4010 235 0.0400

RK8(6) 1.6603e+003 10.4044 0.9121 6.5556 1.7990 236 0.0300

4 Simulation Results and Comparisons
The simulation time used for comparisons is the actual CPU
time used. The input image format for this simulator is a JPEG
format.

Fig.2. Image processing (a) After Averaging Template (b)
After Averaging and Edge Detection

Fig. 2 shows results of the raster simulator obtained from a
complex image of 65,536(256x256) pixels. For this example
an Averaging template followed by an Edge Detection tem-
plate were applied to the original image to yield the images
displayed in Figs.

Edge Detection Averaging Connected Component

Fig.4. Maximum step size that still yield

convergence for 4 different templates 2a and 2b, respectively.

Also in figure 3, it has been shown the quality measures of the
two pictures in 2a and 2b by using the numerical techniques
RK4(2),RK4(3) and RK6(4) using simulated annealing. We
notice that these results are better than those in the literature.

Since speed is one of the main concerns in the simulation,
finding the maximum step size that still yields convergence
for a template can be helpful in speeding up the system. The
speed-up can be achieved by selecting an appropriate ∆t for
that particular template. Even though the maximum step

Fig.5. Simulation time comparisons for 4 different numerical

techniques for four different templates

size may slightly vary from one image to another, the values
in Fig.4 still serve as good references. These results were
obtained by trial and error over more than 100 simulations On
Lena image with small size 43x64(2752 pixels).

The importance of selecting an appropriate ∆t can be easily
visualized in Fig. 4. If the step size chosen is too small, it
might take many iterations, hence longer time, to achieve
convergence. On the other hand, if the step size taken is
too large, it might not converge at all or it would converge
to erroneous steady state values. The results of Fig. 5 were
obtained by simulating Lena image of size 43x64(2752 pix-
els) using an Edge detection template. We notice that the
CPU time for our method is better than those in the litera-
ture.

Volume : 3 | Issue : 4 | May 2013 ISSN - 2250-1991

38 X PARIPEX - INDIAN JOURNAL OF RESEARCH

5 Conclusion
As researchers are coming up with more and more CNN
applications, an efficient and powerful simulator is needed.
So we use simulated annealing in optimizing CNN using the
numerical integrations, especially using RK6(4) comparing it
to the used methods RK4(2) and RK4(3) in the literature for
more efficiency. The simulator hereby presented meets the
need in six ways: 1) Depending on the accuracy required

for the simulation, the user can choose from three numerical
methods to perform the numerical integration, 2) The input
image format is JPEG, which is commonly available, 3) The
input image can be of any size, allowing simulation of images
available in common practices, 4) CPU time of our methods
is better than those in the literature, 5), the quality measures
of the pictures and the edge detection for our method is better
than those in the literature

REFERENCES

[1] M. El-Sayed Wahed and O.H. Abdel wahed (2012). An efficient numerical integration algorithm for Single-Layer Raster Cellular Neural Networks Simulator. the
international Journal of the physical sciences(IJPS), December 16th 2012. | [2] L. 0. Chua and L. Yang(1988). “Cellular Neural Networks: Theory & Applications,” IEEE
Trans. Circuits and Systems, Vol. CAS-35, pp. 1257-1290. | [3] L.O. Chua and T. Roska(1992). “The CNN Universal Machine Part 1: The Architecture”, in Int. Workshop
on Cellular Neural Networks and their Applications (CNNA), pp. 1-10. | [4] J. A. Nossek, G. Seiler, T. Roska and L. 0. Chua (1992.). “Cellular Neural Networks: Theory
and Circuit Design,” International Journal of Circuit Theory and Applications, Vol. 20, pp. 533-553. | [5] J. Varrientos and E. Sanchez-Sinencio(1992), “CELLSIM: A
cellular neural network simulator for the personal computer,” in Proc. 35th Midwest Symp. Circuits Systs, pp. 1384-1387. | [6] W. H. Press, B. P. Flannery, S.A. Teukolsky,
and W.T.g Vetterling(1986). “Numerical Recipes. The Art of Scientific Computing”, Cambridge University Press, New York. | [7] P.J.M. van Laarhoven and E.H.L. Aarts,
(1987) Simulated Annealing: Theory and Application. ISBN 90-277-2513-6 | [8] Ch. Tsitouras and S. N. Papakostas(1991) “Cheap Error methods for Runge-Kutta
methods ”, SIAM J. SCI. COMPUT, Society for Industrial and Applied Mathematics, Vol. 20, No. 6, pp. 2067-2088. | [9] T. E. Hull, W. H. Enright, B. M. Fellen, and A. E.
Sedgwick(1972), Comparing numerical methods for ordinary di_erential equations, SIAM J. Numer. Anal., 9 , pp. 603{637. | [10] L. F. Shampine(1986), Some practical
Runge-Kutta formulas, Math. Comp., 46 , pp. 135{150. | [11] J. C. Butcher, The Numerical Analysis of Ordinary Di_erential Equations, John Wiley and Sons, Chichester,
1987. | [12] E. Hairer, S. P. N¨orsett, and G. Wanner, Solving Ordinary Di_erential Equations I, 2nd ed., Springer, Berlin, 1993. | [13] S. N. Papakostas, On a class of
families of high order Runge-Kutta methods and pairs, 1996, submitted. | [14] S. N. Papakostas and G. Papageorgiou, A family of _fth order Runge{Kutta pairs, Math.
Comp., 65 (1996), pp. 1165{1181. | [15] S. N. Papakostas, Ch. Tsitouras, and G. Papageorgiou, A general family of explicit Runge- Kutta pairs of orders 6(5), SIAM J.
Numer. Anal., 33 (1996), pp. 917{936. |

