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ABSTRACT

An efficient numerical integration algorithm for single layer Raster Cellular Neural Networks (CNN) simulator is presented 
in this paper. The simulator is capable of performing CNN simulations for any size of input image, thus a powerful tool for 
researchers investigating potential applications of CNN. Explicit Runge{Kutta (RK) methods in the form of pairs of orders p (p 
-1) provide an attractive means for the solution of initial value problems of first-order differential equations. Most existing RK 
formulas (single methods as well as pairs) use the minimal number of stages required for achieving a prescribed order. In this 
article we shall study, in terms of efficiency and reliability, RK pairs of orders p (q). This paper reports an efficient algorithm 
exploiting the latency properties of Cellular Neural Networks along with numerical integration techniques RK4(2), RK4(3), and  
RK6(4); simulation results and comparisons are also presented.
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1 Introduction
Explicit RK methods in the form of pairs of embedded meth-
ods are currently considered one of the most efficient means 
for solving the nonstiff initial value problem 

An RK method is characterized by the triple A, b, c (where
           ) and is said to be of algebraic order (or simply 
order) p, whenever the coefficients in A, b, c satisfy a system 
of order conditions, which are in one-to-one correspondence 
with the set of (rooted) trees of orders not exceeding p (see 
Butcher [11], Hairer, N¨orsett, and Wanner [12]). RK pairs are 
characterized by two RK methods of orders p (q), (p > q) with 
distinct vectors of weights b, ^b, which, however, share the 
same function evaluations (A, c are the same for both meth-
ods). 

In practice, the solution of the order conditions for the con-
struction of RK methods or pairs involves the application of 
a suitable set of simplifying assumptions (see, for example, 
[11], and for more up-to-date information see [13] and the 
classification and relevant discussion therein). Although the 
analysis seems to be complicated (especially for higher-order 
methods), in most cases (see [15], [14], and [13]) efficient and 
easily implementable algorithms have been obtained. These 
algorithms are characterized by a number of free parameters 
and define certain families of solution of the respective order 
conditions. 

CNN is a hybrid of Cellular Automata and Neural Networks 
(hence the name Cellular Neural Networks), and it shares the 
best features of both worlds. Like Neural Networks, its con-
tinuous time feature allows real-time signal processing, and 
like Cellular Automata, its local interconnection feature makes 
VLSI realization feasible. Its grid-like structure is suitable for 
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the solution of a high order system of first order non-linear 
differential equations on-line and in real-time.

The basic circuit unit of CNN is called a [2]. It contains linear 
and nonlinear circuit elements. Any cell, C(i,j), is connected 
only to its neighbor cells, i.e. adjacent cells interact directly 
with each other. This intuitive concept is called neighborhood 
and is denoted as N(i,j). Cells not in the immediate neighbor-
hood have indirect effect because of the propagation effects 
of the dynamics of the network. Each cell has a state x input 
U, and output y. The state of each cell is bounded for all time 
t > U and, after the transient has settled down, a cellular neu-
ral network always approaches one of its stable equilibrium 
points. This last fact is relevant because it implies that the 
circuit will not oscillate. The dynamics of a CNN has both out-
put feedback (A) and input control (B) mechanisms. The first 
order nonlinear differential equation defining the dynamics of 
a cellular neural network cell can be written as follows:

where xij  is the state of cell C(i,j), 
( )0xij  is the initial condition 

of the cell, C is a linear capacitor, R is a linear resistor, I is an 
independent current source, A(I,J;k, 1)ykl and B{i,j;k,l)ukl are 
voltage controlled current Sources for all cells C(k,l) in the 
neighborhood N(ij) of cell C(ij), and yij represents the output 
equation.

Notice from the summation operators that each cell is affect-
ed by its neighbor cells. A(.) acts on the output of neighboring 
cells and is referred to as the feedback operator. B(.) in turn 
affects the input control and is referred to as the control oper-
ator. Spe- cific entry values of matrices A(.) and B(.) are appli-
cation dependent, are space invariant and are called cloning 
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templates. A current bias Z and the cloning templates deter-
mine the transient behavior of the cellular nonlinear network. 

CNNs have as input a set of analog values and its program-
mability is done via cloning templates.Thus, programmability 
is one of the most attractive properties of CNNs, but how to 
choose the optimal network and how to program it to per-
form a given task are still topics under investigation. This is 
the reason why there is a need for behavioral CNN simulator 
capable of helping investigators design and manipulate clon-
ing templates (“programming”). Existent tools are not meant 
to deal with a significant number of pixels typical in common 
image processing applications [5]. The simulator presented 
here not only satisfies this need, but it also can be used for 
testing CNN hardware implementations. M. El-Sayed Wahed 
and O.H. Abdel wahed[1] introduced an efficient numerical 
integration algorithm for Single-Layer Raster Cellular Neu-
ral Networks Simulator. In this paper, we consider the same 
problem since we optimize their solution by using the optimi-
zation technique, simulated annealing. 

2 Behavioral Simulation
Recall that equation (1) is space invariant, which means that 
A(i,j;k,l) = A(i-k,j-1) and B(i,j;k,l) = B(i,k;,j,l) for all i,j,kl.

Therefore, the solution of the system of difference equations 
can be seen as a convolution process between the image 
and the CNN processors. The basic approach is to imagine 
a square subimage area centered at (x,y), with the subimage 
being the same size of the templates involved in the simula-
tion. The center of this subimage is then moved from pixel 
to pixel starting, say, at the top left comer and applying the A 
and B templates at each location (x,y) to solve the differential 
equation. This procedure is repeated for each time step, for 
all the pixels. An instance of this image scanning-processing 
is referred to as an “iteration”. The processing stops when it is 
found that the states of all CNN processors have converged 
to steady-state values[2] and the outputs of its neighbor cells 
are saturated, e.g. they have a +1 value. 

This whole simulating approach is referred to as raster 
simulation. A simplified algorithm is presented below for this 
approach. The part where the integration is involved (i.e. 
calculation of the next state) is explained in the Numerical 
Integration Methods section.

In the following two subsections we will discuss simulated 
annealing algorithm and the mathematical modeling used in 
simulated annealing and our proposed simulator.

2.1 The Simulated Annealing Algorithm 
In the early 1980s Kirkpatrick et al. (1983) and independently 
Cemy (1985)[7] introduced the concepts of annealing in com-
binatorial optimization. Originally these concepts were heavily 
inspired by an analogy between the physical anneahng pro-
cess of solids and the problem of solving large combinatorial 
optimization problems. Since this analogy is quite appealing 
we use it here as a background for introducing simulated an-
nealing.In condensed matter physics, anneahng is known as 
a thermal process for obtaining low energy states of a sohd in 
a heat bath. The process consists of the following two steps:

• increase the temperature of the heat bath to a maximum 
value at which the solid melts;

• decrease carefully the temperature of the heat bath until 
the particles arrange themselves in the ground state of 
the solid.

 
In the liquid phase, all particles arrange themselves random-
ly, whereas in the ground state of the solid, the particles are 
arranged in a highly structured lattice, for which the corre-
sponding energy is minimal. The ground state of the solid is 
obtained only if the maximum value of the temperature is suf-
ficiently high and the cooling is performed sufficiently slowly. 
Otherwise, the solid will be frozen into a meta-stable state 
rather than into the true ground state.

Metropolis et al.[7] introduced a simple algorithm for simulat-
ing the evolution of a solid in a heat bath to thermal equi-
librium. Their algorithm is based on Monte Carlo techniques 
(Binder, 1978) and generates a sequence of states of the 
solid in the following way.

Given a current state i of the solid with energy E
i
, then a sub-

sequent state j is generated by applying a perturbation mecha-
nism which transforms the current state into a next state by a 
small distortion, for instance by displacement of a particle. The 
energy of the next state is E

j
. If the energy difference, E

j
— E

i
, 

is less than or equal to zero, the state j is accepted as the cur-
rent state. If the energy difference is greater than zero, then the 
state j is accepted with a probability given by

 

where T denotes the temperature of the heat bath and 
kB is a physical constant called the Boltzmann constant. 
The acceptance rule described above is known as the 
Metropolis criterion and the algorithm that goes with it is 
known as the Metropolis algorithm. It is known that, if the 
lowering of the temperature is done sufficiently slowly, the 
solid can reach thermal equilibrium at each temperature. 
In the Metropohs algorithm this is achieved by generat-
ing a large number of transitions at a given value of the 
temperature. Thermal equilibrium is characterized by the 
Boltzmann distribution, which gives the probability of the 
solid of being in a state / with energy Ei at temperature T, 
and which is given by

where X is a random variable denoting the current state 
of the solid and the summation extends over all possible 
states. As we indicate below, the Boltzmann distribution 
plays an essential role in the analysis of the convergence 
of simulated annealing. Returning to simulated anneal-
ing, the Metropolis algorithm can be used to generate a 
sequence of solutions of a combinatorial optimization prob-
lem by assuming the following equivalences between a 
physical many-particle system and a combinatorial optimi-
zation problem:

• solutions in the combinatorial optimization problem are 
equivalent to states of the physical system;

• the cost of a solution is equivalent to the energy of a state.
 Furthermore, we introduce a control parameter which 

plays the role of the temperature. Simulated annealing 
can thus be viewed as an iteration of Metropolis algo-
rithms, executed at decreasing values of the control pa-
rameter.

We can now let go of the physical analogy and formulate 
simulated annealing in terms of a local search algorithm. To 
simplify the presentation, we assume, in the remainder of this 
chapter, that we are dealing with a minimization problem. The 
discussion easily translates to maximization problems. For an 
instance (S, f) of a combinatorial optimization problem and 
a neighborhood function .The meaning of the four functions 
in the below procedure in fig. 2. is obvious: INITIALIZE com-
putes a start solution and initial values of the parameters c 
and L; GENERATE selects a solution from the neighborhood 
of the current solution; CALCULATE.LENGTH and CALCU-
LATE_CONTROL compute new values for the parameters L 
and c, respectively.

As already mentioned, a typical feature of simulated anneal-
ing is that, besides accepting improvements in cost, it also 
accepts deteriorations to a limited extent. Initially, at large 
values of c, large deteriorations will be accepted; as c de-
creases, only smaller deteriorations will be accepted and, fi-
nally, as the value of c approaches 0, no deteriorations will be 
accepted at all.
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The below is the simulated annealing algorithm:

procedure SIMULATED ANNEALING;
begin
INITIALIZE (istart, Co, Lo);
k:=0;
repeat
for / := 1 to L

k
 do

begin
GENERATE (j from S

i
);

i f f(j) ≤  f(i) then i := j

else

if exp 







 −

kc

jfif )()(

> random[0, 1) then i := j
end;
k:= k + 1;
CALCULATE_LENGTH (Lk);
CALCULATE_CONTROL(ck);
until stopcriterion
end;

2.2 The Mathematical Model and the proposed simulator
Simulated annealing can be mathematically modeled by 
means of Markov chains. In this model, we view simulated an-
nealing as a process in which a sequence of Markov chains is 
generated, one for each value of the control parameter. Each 
chain consists of a sequence of trials, where the outcomes 
of the trials correspond to solutions of the problem instance.

Let {S, f) be a problem instance, N a neighborhood function, 
and X(k) a stochastic variable denoting the outcome of the kth 
trial. Then the transition

probability at the ^th trial for each pair i, j € S of outcomes is 
defined as

where G
ij
 (ck) denotes the generation probability, i.e. the prob-

ability of generating a solution j when being at solution i, and 
G

ij
 (ck) denotes the acceptance probability, i.e. the probability 

of accepting solution j , once it is generated from solution i. 
The most frequently used choice for these probabilities is the

following :
G

ij
(ck) = 

And
Aj(ck) =

For fixed values of c, the probabilities do not depend on k, in 
which case the resulting Markov chain is time-independent or 
homogeneous. Using the theory of Markov chains it is fairly 
straightforward to show that, under the condition that the 
neighborhoods are strongly connected—in which case the 
Markov chain is irreducible and periodic—there exist a unique 
stationary distribution of the outcomes. This distribution is the 
probability distribution of the solutions after an infinite number 
of trials.

The following is the Single-Layer or Raster CNN simula-
tion with Simulated Annealing:
Algorithm:
(Single-Layer or Raster CNN simulation with Simulated An-
nealing) Obtain the input image, initial conditions and tem-
plates from user;

( )( ){
( )( ){
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/* M,N = # of rows/columns of the image */

/* APPLY SIMULATED ANNEALING */
begin
INITIALIZE (i

start
, C

o
, L

o
);

k:=0;
repeat
for i := 1 to L

k
 do

begin
GENERATE (j from S

i
);

i f f(j) ≤  f(i) then i := j
else
if exp 








 −

kc

jfif )()(

> random[0, 1) then i := j
end;
k:= k + 1;
CALCULATE_LENGTH (Lk);
CALCULATE_CONTROL(ck);
until stopcriterion
end;
/* Use the optimized parameters from the simulated anneal-
ing */
while (converged-cells < total # of cells) (
for (i=l; i<=M; i++)
for (j=l; j<=N; j++) (
if (convergence-flag[i] [i I)
/* calculation of the next state*/
continue; /* current cell already converged */

/* convergence criteria */

 { 

{
convergence-flag[i][j] = 1;
converged-cells++ ;
}
} /* end for */
/* update the state values of the whole image*/
for (i=l; i<=M; i++)
for (j=l; j<=N; j++) (
if (convergence-flag[i][j]) continue;
X

ij
(t

n+1
) = X

ij
(t

n
);

}

#_of_iteration++;

) /* end while */

The raster approach implies that each pixel is mapped onto a 
CNN processor. That is, we have an image processing func-
tion in the spatial domain that can be expressed as:

g(x,y) = T(f(x,y))      (7)

where f(.) is the input image, g(.) the processed image, and T 
is an operator on f(.) defined over the neighborhood of (x,y). 

3 Numerical Integration Methods
Three of the single-step numerical integration algorithms 
used in the CNN behavioral simulator described here. They 
are RK4(2), RK4(3), and RK6(4) algorithms.

3.1.1 Stepsize selection algorithm. 
There are currently two widely used methods that have ap-
peared in the literature for changing the stepsize of p (q)-or-
der RK codes. The first is to apply the formula (see [9])

      

Where f
1
 is a safety factor and the new sought-after stepsize 
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h
n+1 

= x
n+1

 - x
n
 is predicted in terms of an estimate of the local 

error EST
n 
which is based on the approximation

     (9)

Assuming yy nn

^

,
 to be the pth-, qth-order approximate solu-

tions, respectively, at the previous grid point xn and TOL the 
requested tolerance. If

,TOLEST n
≤  

Then the computed solution yn+1 is accepted and the integra-
tion is carried out, otherwise(5) is reevaluated by substituting

ESTEST nn 1+
→  

This methodology is termed the error per step (EPS) mode 
(see Shampine [10]).

An alternative is to consider the same algorithm (5), but to 
use, instead of (6), the approximation

      (10)

This is called error per unit step (EPUS) [10].

3.1.2 RK4(2) and RK4(3) at n = 4 
According to [8], The equations of RK4(2) and RK4(3) are:

Therefore, the final integration is a weighted sum of the five 
calculated derivates is given: 

The difference between Rk4(2) and RK4(3) is the local trun-
cation error in the case of RK4(2) is given by using the RK(2)
i.e. 

But local truncation error in the case of RK4(3) is given by 
using the RK(3)i.e. 

3.1.3 RK8(6) at n= 6
According to [2], The equations of RK 8(6) are:

,

^

yyEST nnn
−≈

,
h
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EST

n

n
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Therefore, the final integration is a weighted sum of the twelve 
calculated derivates is given: 

Where f(l.) is computed according to (1). There are many sin-
gle step methods available to us for this purpose. But, one 
option worth considering is the combination of two methods 
in solving for the solution. So we use Rk8(6) to make a very 
efficient computer solving the problem the way it evaluates 
the integral presented

method Mean Square Error Peak Signal to 
Noise Ratio

MNormalized 
Cross-Correlation

Average 
Difference

Structural 
Content

Maximum 
Difference

Normalized 
Absolute Error

RK4(2) 1.6661e+003 12.5551 0.9349 8.9551 1.3255 243 0.0710

RK4(3) 1.6990e+003 11.4449 0.9306 6.1449 1.4010 235 0.0400

RK8(6) 1.6603e+003 10.4044 0.9121 6.5556 1.7990 236 0.0300

4  Simulation Results and Comparisons
The simulation time used for comparisons is the actual CPU 
time used. The input image format for this simulator is a JPEG 
format. 

Fig.2. Image processing (a) After Averaging Template (b) 
After Averaging and Edge Detection

Fig. 2 shows results of the raster simulator obtained from a 
complex image of 65,536(256x256) pixels. For this example 
an Averaging template followed by an Edge Detection tem-
plate were applied to the original image to yield the images 
displayed in Figs. 

Edge Detection Averaging Connected Component

Fig.4. Maximum step size that still yield 

convergence for 4 different templates  2a and 2b, respectively.

Also in figure 3, it has been shown the quality measures of the 
two pictures in 2a and 2b by using the numerical techniques 
RK4(2),RK4(3) and RK6(4) using simulated annealing. We 
notice that these results are better than those in the literature.

Since speed is one of the main concerns in the simulation, 
finding the maximum step size that still yields convergence 
for a template can be helpful in speeding up the system. The 
speed-up can be achieved by selecting an appropriate ∆t for 
that particular template. Even though the maximum step 

Fig.5. Simulation time comparisons for 4 different numerical 

techniques for four different templates
 
size may slightly vary from one image to another, the values 
in Fig.4 still serve as good references. These results were 
obtained by trial and error over more than 100 simulations On 
Lena image with small size 43x64(2752 pixels).

The importance of selecting an appropriate ∆t can be easily 
visualized in Fig. 4. If the step size chosen is too small, it 
might take many iterations, hence longer time, to achieve 
convergence. On the other hand, if the step size taken is 
too large, it might not converge at all or it would converge 
to erroneous steady state values. The results of Fig. 5 were 
obtained by simulating Lena image of size 43x64(2752 pix-
els) using an Edge detection template. We notice that the 
CPU time for our method is better than those in the litera-
ture.
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5 Conclusion 
As researchers are coming up with more and more CNN 
applications, an efficient and powerful simulator is needed. 
So we use simulated annealing in optimizing CNN using the 
numerical integrations, especially using RK6(4) comparing it 
to the used methods RK4(2) and RK4(3) in the literature for 
more efficiency. The simulator hereby presented meets the 
need in six ways: 1) Depending on the accuracy required 

for the simulation, the user can choose from three numerical 
methods to perform the numerical integration, 2) The input 
image format is JPEG, which is commonly available, 3) The 
input image can be of any size, allowing simulation of images 
available in common practices, 4) CPU time of our methods 
is better than those in the literature, 5 ), the quality measures 
of the pictures and the edge detection for our method is better 
than those in the literature 
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