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ABSTRACT

In this article has been proposed an analog model and a new algorithm for random distribution of hard spheres in space 

(hard disks on the plane), which is applicable to any distribution of particle diameters and volume concentrations up to the 

maximum possible corresponding to close packing of the particles. The proposed method is called the method of viscous 

suspension. There has been conducted a simulation of the structure of heterogenous condensed mixtures (HCM) containing 

one or two monodisperse particles in a wide range of their volume concentrations. We determined the main statistical 

characteristics describing the internal structure of HCM. It has been shown that the method of viscous suspension allows 

simulating an appearance of regular structures when the volume concentration of the particles is close to the maximum 

possible corresponding close packing. It has been demonstrated that the contact particles make in HCM extensive clusters, 

whose dimensions increase with the increase of volume concentration of the particles.
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INTRODUCTION 
The problem of random spatial arrangement of solid spheres 
(or discs in the plane), with a given diameter distribution is not 
only applied but also the fundamental significance, as occurs 
in many areas of science [1-4].

The analytical solution of this problem even in the simplest 
case is missing, so the primary method of research is com-
puter modeling. However, and in this case there is no com-
mon method of placing in space particles with diameters of 
random given distribution [5,6]. Direct solution of this problem 
by sorting even for the small number of particles occupies an 
unacceptable time and very often does not lead to the final 
result. The main difficulty consists in the fact that the alloca-
tion of particles should not overlap. 

Currently are known and completely investigated methods 
of distributing particles in space as a “point process of solid 
shells”, “Gibbs’ point process”, “Strauss’ model”, “the spatial 
process of birth and destruction”, etc. [1-3]. However, the ap-
plication of these methods is very limited because they have 
the weak convergence for large bulk densities of filled space, 
close to the maximum, and time consuming for the calculation 
of one embodiment. 

The greatest difficulties arise when particles are placed in 
space with wide spectrum of sizes. Methods mentioned 
above frequently lead to that of the size distribution of par-
ticles which is different from the distribution of the initial par-
ticles.

Suggested in the publication [7] is the method of disposal of 
particles in space (disks in the plane) that does not depend 
on distribution of the initial particle size and the bulk density 
of their placement in space, has good convergence facilitating 
the investigation of the system with a bulk density filling 

THE PHYSICAL MODEL AND COMPUTER IMPLEMENTA-

TION
Digressing from actual system studied, we consider the fol-
lowing model problem [7,8]. Let there be a system of N  

spherical particles with known radii i
r ).,...,1( Ni =

 We assume 

that the particles can move freely, approaching each other 
within distances shorter than the sum of their radii, and the 
repulsive force acting between them vanishes for non- over-
lapping particles. Hence, the system of spherical particles 
coinciding with the centers of the corresponding spheres. 
Thus, we shall consider a system consisting of N point parti-

cles with repulsive forces acting between them. The forces 
are assumed to be central and paired. For two point particles 
i  and j  corresponding to spheres with radii ir  and 

,jr  the 

force is given by the relations [7]: 
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where ix  is the radius-vector of the i th particle, 
ji xxr −=

 is 

the distance between the centers of the spheres, and )(0 rF  is 
a certain function which will be defined below [9].

Particle motion in that system can be studied numerically 
by the molecular-dynamic method [10]. Particles in the sys-
tem are in continuous random motion. To use that process 
to arrange the spheres randomly in space, it is necessary to 
“freeze” the system at a certain moment, i.e., to cease the 
calculation by fixing the particle coordinates. We shall call that 
method a molecular-dynamic point process. It can be regard-
ed as a molecular-dynamic version of the Gibbs point process 
[2,3,11]. That processes are related to one another as the 
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molecular-dynamic method and the Monte Carlo method in 
statistical physics [10]. Obviously, in the “frozen” state of the 
system, overlapping of some spherical particles is possible, 
and additional, rather complicated procedures, for example, 
a gaping procedure, are required to obtain a system of nono-
verlapping, randomly arranged particles.

This difficulty will be greater the closer the volume-filling den-
sity is to the maximum possible value. To overcome this, we 
assume that the viscous force acting on a particle is equal to 

,vµ−
 where v  is the velocity vector of the particle and µ  is 

the proportionality factor (viscosity). Owing to the action of the 
viscous force, free (non-overlapping) particles stop with time, 
and for large values of the coefficient ,µ  the system should 
rapidly attain a state of equilibrium in which all particles are 
immovable and do not overlap. This stage is regarded as a 
random arrangement of solid spherical particles in space. If 
the system contains even two overlapping particles, they will 
fly apart under the action of the repulsive force [7]. 

The dynamics of this system is governed by the system of 
equations [7]:

where im  is the mass of the i th particle and t  is the time. 

This equation describes the dynamics of a viscous suspen-
sion consisting of a system of particles between which repul-
sive forces are acting.

Generally, this method is not dissimilar in implementation to 
the molecular-dynamic method. The dynamic equations of 
the system includes a number of unknown parameters and 
functions 

,,( ii mµ
 and 

).0F  They are not essential from the 

view-point of the problem solved (random arrangement of 
particles in space), but they are very important from the view-
point of implementation and convergence of the calculation 
method.

Because we are interested neither in the final steady-state 
distribution of the particles in space nor in the process of re-
laxation of the system to this state, the problem can be signifi-
cantly simplified [7].

Increasing the viscosity of the system leads to more rapid re-
laxation of the system to the state of equilibrium. Therefore, in 
calculations, the value of 

µ
should be large enough in order 

that the inertia term on the left side of the equation of the 
system in next form 

.
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With an appropriate choice of the parameter 
,0F we can set 

.1=µ

Below, in article [7] was restricted to the case 
.0 constF =
 

Assuming that the function 0F  depends on the distance be-

tween the particles and their radii (for example, increases with 
decrease in distance between the particles), we can improve 
the convergence of the process to the state of equilibrium by 
assuming faster scatter of overlapping particles. However, as 
calculations show the gain thus obtained is minimal and it 
does not justify the complication of the model [9]. 

Thus, we can write the evolution equation in next form

 (1)

Equation (1) does not contain parameters describing the vis-
cous medium. The solution of this equation converges to a 
state in which the right side vanishes for all .i  The system 

can be in this state during long period where external distur-
bances are absent. This state is an equilibrium state.

The process governed by equation (1) may be used for ran-
dom arrangement of particles in space. Commonly the pro-
posed method called the viscous-suspension method or, by 
analogy with other processes of arrangement of solid parti-
cles in space [2,3,11], the viscous-suspension point process.

Equation (1) describes the regular dynamics of the system 
of solid spheres and contains no randomness elements. The 
random nature of the equilibrium distribution of solid particles 
is determined by random initial conditions. The initial condi-
tions are specified using a random-number generator, which 
determines the initial, coordinates of each particle [78]. This 
is equivalent to the fact that the centers of the region and 
the system then evolves to the state of equilibrium according 
our equation. In the point process of arranging solid shells, 
the size distribution of the particles arranged in space can 
differ from that of the initial particles since the particles are 
constantly put in or removed from the system if they overlap 
with other particles [65,66,73]. “In contrast to this, in the vis-
cous-suspension method, it is possible to perform a system of 
particles with specified characteristics that are to be randomly 
arranged in space. It is hoped in this case that if there is at 
least one of the system in which particles do not overlap, the 
system will sooner or later attain this state. Unfortunately, a 
rigorous mathematical proof of this statement is not available. 
However, the numerous calculations performed for various 
systems up to volume densities of space filling equal to 0.95 
of the maximum possible value for a given system have not 
revealed any attractors that did not coincide with the equilib-
rium state of system (1). The implementation of this method is 
generally similar to that of the molecular-dynamic method in 
statistical physics but there are some differences” [7].

“First, solution Equation (1) does not require high-order calcu-
lation schemes, which are often used in the molecular-dy-
namic method because of the instability (“scatter”) of phase 
trajectories. It suffices to employ the simple integration 
scheme 

,)()( tvtxttx iii δδ +=+
 where tδ is the integra-

tion step and iv  are the right sides of equation (1). Without 

loss of computational stability, the integration step can be 
large enough, for example, .01.0=tδ  It should be kept in 

mind, however, that the displacement of overlapping particles 
in one step is of order .tδ  This should be taken into account 

in calculating the coordination number of the system (the 
number of contacts between particles) and in calculating 
states similar to close packing. In the first case, this is due to 
the fact that in the steady state of the system, contacting par-
ticles, the choice of a large integration step leads to the poten-
tially attainable packing density becoming lower than the 
theoretically possible density corresponding to .0=tδ

The calculation procedure consists of an exhaustive search 
of all particles of the system in a given step and calculation of 
new coordinates of the particles. In calculating the right sides 
of equation (1), for each particle, we perform an exhaustive 
search for the remaining particles of the system. When the 
force acting on a particle is determined by simple exhaustion, 
the calculation time increases in proportion to the square of 
the number of particles in the system, and even for low-den-
sity packing, a calculation of the system takes too much time. 
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To reduce the calculation time, it is possible to examine only 
the nearest neighbors of the particle considered. To this end, 
the entire calculation region was divided into cells whose size 
was equal to the largest particle size. We took into account 
only particles in the nearest 27 cells for the spatial problem 
and only particles in the nearest nine cells for the plane prob-
lem. A list of all particles was compiled so that the particles 
located in the cell considered could be found without addi-
tional check. In calculating the displacement of a particle, we 
checked in each step whether it moved to another cell or not; 
if it did, the list of particles was corrected [7].

As the boundary conditions in the viscous-suspension meth-
od, we use periodicity conditions or bounded by solid proof 
walls.

As in the molecular-dynamic method, the main restriction is 
the time of calculation of one variant, which depends on the 
number of particles in the system and, hence, on the maxi-
mum dimensions of the calculation region. In the analysis per-
formed, a region with dimensions 10 x 10 x10 was used for 
arrangement of spheres in space and a region with dimen-
sions 25 x 25 was used for arrangement of disks in a 
plane”[68]. The dimensions are given in relative units. The 
scale is the diameter of the oxidizer particles. We note that for 
the plane problem, the calculation time is reasonable even for 
a calculation with dimensions 200200×≈ [8,12].

USE OF THE METHOD OF VISCOUS SUSPENSION
Some results of the calculations showing possibilities of the 
method of viscous suspension.

Since the problem of placement of solid particles is geometri-
cal, we will consider it into the dimensionless form: all dimen-
sions assign to certain geometric scale, as will be usually 
chosen the diameter of a typical particle. In calculations will 
be used solid impermeable walls as the boundary conditions.

In the beginning, each calculation was conducted by the 
random initial placement of particles in the computational 
domain. This placement is ended as soon it reached a pre-
determined value of the volume concentration of particles of 
various types. The calculation terminates when right parts of 
(1) vanishes. 

For description, examine the placement of the plane problem 
i.e solid disks on the plane. Let us consider system of identi-
cal disks of unit diameter. The only variable parameter in de-
termining the condition of the system, is the bulk density of 
the filling ρ  (volumetric concentration of particles), which we 

shall define as the ratio of the particles to the volume of the 
same shape. Obviously, 

,maxρρ ≤
where 

−=
32

max

πρ
 

maximal possible density of filling corresponding to close 
packing of identical disks on a plane.

Figure 1: Placement of solid disks on the plane by means of 
method of a viscous suspension for different volumetric den-
sities of filling: a – 0.5; b – 0.7; c – 0.8; d – 0.84

Sources: [13,14]
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Fig. 1 (a-d) present options for random allocation of solid disks 
inside the square region with different volume concentrations 
of particles [13,14]. It is believed that the space of between 
the particles filled with a continuous binder, which provides 
strength system with any volume concentrations of particles.

Fig. 1 shows the way an ordered arrangement of particles 
occurs while their volume density increases in the region un-
der consideration. For 5.0<ρ , any regular patterns of parti-

cles are not observed. The particles are randomly distributed 
in a volume. For 5.0=ρ , a quite large number of clusters of 

contact particles is observed. Here the particles form a hex-
agonal ordered structure characteristic for close packing.

Further increase of the volume density ρ  results in increased 
number of particles integrated in ordered structures close 
hexagonal ones.

If 8.0=ρ  the obtained structure resembles disparate ele-
ments of crystalline grid surrounded by regions with amor-
phous structure. For 8.0=ρ 4 the system consists of separate 
regions of closely packed particles separated by thin transi-
tion zones. However, being dense like this, the system has 
small areas with amorphous structure.

Thus, it is obvious that the appearance of a regular structure 
in the system of hard spheres is not connected with a specific 
mechanism of particle interaction, but is a purely geometric 
property of the system.

The pair correlation function ),(rg  which is defined as

 (2)

is one of the most important characteristics of the system of 
particles for the plain problem where  is a number of 
particles in a spherical (circular) layer  averaged over 
all the particles selected as the center of the spherical (circu-
lar) layer; n  is an average number of particles per unit of vol-
ume.

The pair correlation function is one of the most general char-
acteristics of the hard particle system irrespective from appli-
cation (see e.g. [8,12,14]). For periodic structures correlations 
do not decay at infinity and have a periodic nature. If the pair 
correlation function with increasing distance r  tends to unity, 
the particles are randomly distributed. My calculations of the 
pair correlation function confirm this fact.

Since the actual calculation volume is limited, the minimum 
distance to the volume bounds was calculated for each parti-
cle, and the contribution of each particle in  was de-
termined for each r smaller than this distance. This makes it 
possible to avoid distortion of function )(rg due to boarder ef-

fects. When calculating  and the correlation function 
it was taken that 

Figure 2: The pair correlation function of the hard sphere 
system Sources: authors

Fig. 2 shows pair correlation functions of a system of similar 
spheres with a unit diameter for several packing densities in a 
rectangular area. At low packing densities 

7.0≤ρ
 the cor-

relation function decays quickly and at a distance of about 3-4 
particle diameters it is close to unity. When density increases 
to 3-4 particle diameters it is close to unity. When packing 
density increases the correlation length increases as well and 
the correlation function decays more slowly. At high packing 
densities  the correlation function almost never de-
cays, which fact demonstrates appearance of a regular struc-
ture with an infinite correlation length. To compare with, Fig. 
1.2 shows a theoretical pair correlation function ( -symbols) 
for a close packing of similar discs in a plane, obtained with 
the same radial intermittency. It is obvious that even with 

 the pair correlation function repeats all the charac-
teristic features of a correlation function for close packing.

When the volume density of space filling particles increases, 
the time required for calculating one option (the time for re-
laxation of a system to a desired state) increases as well. 
Analysis has shown that the calculation time has a strong 
nonlinear dependence on 

.ρ

As packing density increases, the free volume of space within 
which particles may move to reach an equilibrium condition 
decreases. The closer the system to close packing, the less 
free space remains and the system requires more time to 
reach an equilibrium condition.

Let’s introduce the parameter 
,max ρρζ −=
which will be called 

the particle mobility. This parameter characterizes the possi-
bility of particles moving without being crossed. The higher 
mobility ,ζ  the further the system of particles from close pack-
ing and the less average time it requires to reach an equilib-
rium condition. Although similarity of the geometric system 
and thermodynamics under consideration are to a large ex-
tent relative , we introduce the notion of “geometric tempera-
ture” of a solid particle system, which is naturally defined as 
monotonic function of mobility )( max ρρ −= fT where .0)0( =≤ζf  

Under zero “geometric temperature” particle mobility in the 
system is zero, and the system will never be able to come to 
equilibrium. With the increase of “the temperature” the mobil-
ity of the particles increases, which allows them to reach the 
equilibrium condition quicker. Thus, as in thermodynamics, 
increase of “the temperature” accelerates the process of es-
tablishing an equilibrium condition.

Figure 3: Nondimensional time for relaxation of the hard 
sphere system to an equilibrium condition depending on 
the volume concentration
Sources: authors

Fig. 3 represents the dependence of the relaxation time τ

from the equilibrium condition of the parameter )/(1 max ρρ − for the 
hard sphere described by equations (1) and (2). Timing was 
done in steps. A step was a cycle of calculation of movements 
of all the particles during time .tδ

Dependence of the relaxation time of the system from “the 
temperature” can be approximately represented as the Arrhe-
nius dependence well known from the kinetic theory 
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,exp 





=
T

B
Aτ where Aand B are some parameters inde-

pendent from the type of computer and weakly dependent on 
the calculation algorithm and its computer implementation. If 
particles have low mobility, the dependence of temperature 
from mobility may be represented as the power function 

,)( max

nT ρρ −= where .1>n

Fig. 3 shows the function  as a firm line. The 
function adequately describes this experimental dependence 
in the area of low mobility of particles  and con-
forms to the results obtained by S.A. Rashkovsky (Moscow 
Institute of Heat Technology, Russia Federation) [6].

Thus, it should be recognized that it is impossible to achieve 
an equilibrium condition by the method of viscous suspension 
within a definite time when particles are closely packed. This 
result seems to be fundamental rather than only a property of 
the method of viscous suspension [7]. 

This allows us to make the following statement: whatever 
the algorithm of particle distribution in space, infinite time is 
required to achieve equilibrium condition when particles are 
closely packed. 

The analysis of Fig. 1 (a-d) demonstrates that the contact par-
ticles make clusters, and the average number of particles in a 
cluster grows while the volume density increases.

After the particles were distributed in the system (i.e. after an 
equilibrium condition was reached) clusters were identified. 
The algorithm of cluster identification in an equilibrium condi-
tion of the system is obvious and is based on the following 
definition of the cluster: a particle is assigned to a cluster, if 
it adjoins at least one particle belonging to this cluster. Im-
plementation of the algorithm selecting “isolated clusters” is 
quite a simple process which consists in creating a list of the 
particles and keeping a running list of clusters. The particles 
included in the list are analyzed sequentially. Each particle of 
this list must be checked for being joined with a particle which 
is a member of any cluster. If it is joined with that particle, it 
is removed from the list of particles and placed in the cor-
responding cluster on the list of clusters. In other case it is 
added to the list of clusters, but as a new cluster, etc.

The concept “contact particles” requires some explanation. 
The persistence of the analytical model connected with the 
final length of step tδ results, strictly speaking, in the ab-

sence of contact particles in the final equilibrium condition, in 
the average clearance between the surfaces of the particles 
being .2/tδ  Therefore, it is further considered that in an 

equilibrium condition particles contact if the clearance be-
tween them does not exceed ,tkeδ  i.e. if condition 

tkrrxx ejiji δ++<− is fulfilled. Here ek  is a certain param-

eter which was taken to be .5.12.1 −=ek

Figure 4: Distribution of clusters according to «the 
mass» in the hard sphere system for different volume 
concentrations

Sources: authors
The clusters are characterized by the number of particles 
contained in them (the mode number of the cluster or the di-
mensionless mass of the cluster - the cluster mass rated as 
the mass of one particle). As calculations of hard sphere sys-
tems show (Fig. 4) at low packing densities 3.0≤ρ  the bulk of 

the system accounts for clusters containing no more than 10-
30 particles. However, when 6.0≥ρ , more than 70 % of mass 

of the system is concentrated in one large cluster that pro-
vides cohesiveness of the system.

There is a logical question: how the size of the largest clus-
ter in the system changes with the increase of the packing 
density, and which packing densities provide bound structure 
extending from one end of the system to the other. The critical 
packing density which provides cohesiveness of the system is 
called the percolation limit [16-18].

Figure 5: Dependence of the maximum size of the largest 
cluster of the hard sphere system on the volume concen-
tration of spheres
Sources: authors

Fig. 5 shows the maximum size of the largest cluster of the 
hard sphere system related to the size of the system depend-
ing on the packing density. 

It is obvious that if density is equal to
6.04.0 −≈ρ

 for the sys-
tems of spheres with the same diameter, the sizes of the larg-
est cluster are close to the sizes of the whole system. Thus, 
these packing densities in the system provide a cluster ex-
tending to the entire system and ensuring its coherence. 

If packing densities 4.0<ρ  the probability of building of a clus-
ter, covering the entire system is close to zero. If packing den-
sities 6.0>ρ  there are significant fluctuations in the sizes of 

clusters. At the same time the system can be formed of small 
clusters having dimensions substantially smaller than the sys-
tem, and of large clusters, covering the entire system. The 
fluctuations decrease with increasing size of the system, and 
we can assert that for a system of infinite volume there will be 
a threshold density in the range of ,6.04.0 −≈ρ above which the 
system with a probability of 0.9 forms a bound cluster spread-
ing over the entire system. Packing densities above 0.6 pro-
vide only some isolated clusters whose dimensions are much 
smaller than the system. Thus, the packing density 6.0=ρ  can 
be considered the percolation limit for systems of spheres 
with the same diameter. 

In the chemical stereology the concept of coordination num-
ber [19], defined as the number of contacts with near-neigh-
bors is fundamental. Let’s consider how the coordination 
number in the hard sphere system changes with the increase 
in the density of filling the space.
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Figure 6: Distribution of number of particle contacts in 
the hard sphere system for different volume concentra-
tions
Sources: authors 

Fig. 6 shows the function of distribution of the number of con-
tacts in systems with different volume densities. It is clear that 
when packing density increases, the number of contact parti-
cles grows. At low packing densities 4.0<ρ  prevail particles 

contacting with 1 or 2 particles or not contacting with any 
other particle. And at high packing densities 8.0≥ρ  the sys-

tem is dominated by particles contacting simultaneously with 
four or more particles. It should be noted that up to 8.0=ρ  

any particles contacting simultaneously with six other parti-
cles, as it should be in close packing, are absent in the sys-
tem.

POLYDISPERSE PARTICLE SYSTEM
The method of viscous suspension [6] equally well applicable 
to both monodisperse systems and for systems with random 
distribution of particles according to their size. 

Illustratively let’s consider some of the results of simulation 
of bidisperse hard sphere systems. It should be noted that 
bidisperse hard sphere systems can be considered as two-
dimensional models HCM or as “cuts” of real HCM. They al-
low to vividly demonstrate how particles are distributed in real 
systems. For three-dimensional systems such demonstration 
is difficult. 

It is believed that the system contains hard spheres of two 
different diameters. We will continue to use the dimensionless 
variables: all linear dimensions shall be attributed to the large 
diameter of the particles. Thus, large particle diameter is 
equal to unity, and the diameter of fine particles is equal to the 
predetermined value .1<d

Let us introduce volume concentrations of large particles 1ν  

and of small particles .dν  And the packing density shall be 
represented as .1 dννρ +=

In publication [6] represent the structures of bidisperse sys-
tems for 5.0=d  and ,5.01 =ν obtained in a simulation experi-

ment by the method of viscous suspension. The analysis of 
results shows that large particles are grouped in compact 
units with fine particles on edges. Fine particles make linear 
extended structures, the length of which can reach dozens of 
particles. This is typical for relatively large diameters d  of fine 

particles. 

The picture slightly changes when fine particles diminish in 
sizes. The analysis of [6] shows that in this case fine particles 
make compact units located between several neighboring 
large particles. However, in this case as well the clusters of 
contact fine particles elongate in one direction. We can say 

that they form bits of “threads”, arranged between the large 
particles. The above figures clearly show that on micro-level 
particles are unevenly distributed within the specified region. 
This primarily applies to fine particles. Large particles are 
more evenly distributed. The more concentrated large parti-
cles are (when concentration of fine particles is fixed) or fine 
particles (when concentration of large particles is fixed), the 
more unevenly fine particles are distributed in the specified 
volume and the larger clusters they make.

THE STRUCTURE OF HETEROGENEOUS CONDENSED 
MIXTURES
As suggested by S.A. Rashkovsky, method of viscous sus-
pension [7] may be applied to simulation of a structure having 
broad class of composite materials which are filled with solid 
particles having almost spherical form. The author has made 
a mathematical simulation of metal containing and metal-free 
HCM structures by the method of viscous suspension. 

In general, the system is characterized by volume concentra-
tions of components equal to the ratio of the total volume of 
particles of a given type to the volume of the entire system. 
Let us introduce volume concentration of oxidizer particles  
v

AP 
and aluminum particles v

lP.
 An example of the simulation 

is shown in Fig. 7.

Figure 7: The three-dimensional structure of a metal con-
taining HCM: large particles are polychloracetate (PCA); 
small particles are Al 

Sources: authors

The present study considered HCM where the mass content 
of aluminum ranged between 10 and 20%  and 

the mass content of the oxidizing agent ranged between 40 
and 70% .The rest mass of HCM was the share 
of biding substances.

Further we used a simple formula

 (3)

where  to assess density 

of HCM.

We also chose solid and impenetratable walls as a boundary 
condition to make computations.

At the beginning of each computation we conducted random 
initial placement of particles in the computational domain. 
This placement ended as soon as the desired volume con-
centrations of units were reached. Computation ended when 
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the right-hand sides of all the equations (2) vanished. 

As we mentioned, the method of viscous suspension has no 
limitations as to the particle distribution according to their size 
and well converges up to volume concentrations close to the 
close packing [18]. There is a limitation as for the number of 
particles involved in the calculation connected with the com-
puter’s performance and time limits.

Calculations by the method of viscous suspension were car-
ried out for a wide class of HCM containing several types of 
dispersed components, each having its own function in the 
distribution according to size. However, a system with parti-
cles of the same diameter already has all the properties inher-
ent in real HCM. What’s more? Such a simplification allows 
distracting from the complex analysis connected with the dis-
tribution of particle sizes.

CONCLUSIONS
There has been proposed an analog model and a new algo-
rithm for random distribution of hard spheres in space (hard 
disks on the plane), which is applicable to any distribution of 
particle diameters and volume concentrations up to the maxi-
mum possible corresponding to close packing of the particles. 
The proposed method is called the method of viscous sus-
pension. 

There has been conducted a simulation of the structure of 
heterogeneous condensed mixtures containing one or two 
monodisperse particles in a wide range of their volume con-
centrations. We determined the main statistical character-
istics describing the internal structure of HCM. It has been 
shown that the method of viscous suspension allows simu-
lating an appearance of regular structures when the volume 
concentration of the particles is close to the maximum pos-
sible corresponding close packing.

It has been demonstrated that the contact particles make in 
HCM extensive clusters, whose dimensions increase with the 
increase of volume concentration of the particles. 

We have studied the structure of clusters of contact particles. 
It has been demonstrated that the average coordination num-
ber of clusters containing the same number of particles can 
only take discrete values, which are determined by the pres-
ence cyclic elements in the structure.
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