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ABSTRACT

Principal components analysis (PCA) is one of a family of techniques for taking high-dimensional data, and using the 

dependencies between the variables to represent it in a more tractable, lower-dimensional form, without losing too much 

information. PCA is one of the simplest and most robust ways of doing such dimensionality reduction. It is also one of the 

best, and has been rediscovered many times in many fields, so it is also known as the Karhunen-Lo_eve transformation, the 
Hotelling transformation, the method of empirical orthogonal functions, and singular value decomposition.

Keywords : mean, standard deviation, variance, covariance, eigenvector, eigenvalues

INTRODUCTION 
Principal component analysis is the way of finding patterns in 
data. These data is analyzed in such a way that the similari-
ties and the differences are highlighted. Since patterns in data 
can be hard to find in data of high dimension, where the luxury 
of graphical representation is not available, PCA is a powerful 
tool for analyzing data. The other main advantage of PCA is 
that once it is  found these patterns in the data, and the data 
is in  compressed form, ie. by reducing the number of dimen-
sions, without much loss of information, then  this technique 
can be used in image compression. The entire subject of Prin-
cipal Component Analysis is based around the idea that the 
data set is very big for more accuracy and to analyze that the 
data set in terms of the relationships between the individual 
points in that data set. The implementation of PCA is based 
on the entire subject of statistics that can be done on a big set 
of data, and what they do for the user about the data itself.

STANDARD DEVIATION
To understand standard deviation, we need a bigger data set. 
Statisticians are usually concerned with taking a sample of a 
population. To use election polls as an example, the popu-
lation is all the people in the country, whereas a sample is a 
subset of the population that the statisticians measure. Here 
is an example data set :

X = [ 1 2 4 6 12 15 25 45 68 67 65 98 ]

It could be simply used the symbol X to refer to this entire set 
of numbers. If there is a need to refer to an individual number 
in this data set, the subscripts will be used on the symbol X 
to indicate a specific number. Eg. X

3
 refers to the 3rd number 

in X, namely the number 4. It should be noted that X1 is the 
first number in the sequence. Also, the symbol n  will be used 
to refer to the number of elements in the set X There are a 
number of things that can be calculated  about a data set i.e. 
the mean of the sample. 

The mean is calculated by the formula:

                           

             …………………(Eq.1)

The symbol i.e. X  (said “X bar”) to indicate the mean of the 
set X . Unfortunately, the mean doesn’t tell us a lot about the 
data except for a sort of middle point. The Standard Deviation 
(SD) of a data set is a measure of how spread out the data 
is. The definition of the SD is: “The average distance from the 
mean of the data set to a point”. The way to calculate it is to 
compute the squares of the distance from each data point to 
the mean of the set, add them all up, divide by(n-1) , and take 
the positive square root. As a formula:

………………..(Eq.2)

where s is the usual symbol for standard deviation.

TABLE-1
THE ABOVE EXAMPLE DATA SET

Standard 
Deviation

X (X - X ) (X – X )2

1 -33 1089

2 -32 1024

4 -30 900

6 -28 784

12 -22 484

15 -19 361

25 -9 81

45 11 121

68 34 1156

67 33 1089

65 31 961

98 64 4096

Total 408 12146

Divided by (n-1) 1104.182
Square Root 33.2292
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VARIANCE
Variance is another measure of the spread of data in a data 
set. In fact it is almost identical to the standard deviation. The 
formula is this:

S2 =  ………………(Eq.3)

It is to be  noticed that this is simply the standard deviation 
squared, in both the symbol (S2) and the formula (there is no 
square root in the formula for variance). S2  is the usual sym-
bol for variance of a sample. Both these measurements are 
measures of the spread of the data. Standard deviation is the 
most common measure, but variance is also used  to provide 
a solid platform from which the covariance can launch from.

COVARIANCE
The standard deviation and the variance are purely one-di-
mensional. Data sets like this could be: heights of all the peo-
ple in the room or  marks for the last COMP101 exam etc. 
However many data sets have more than one dimension, and 
the aim of the statistical analysis of these data sets is usually 
to see if there is any relationship between the dimensions. 
For example, we might have as our data set both the height 
of all the students in a class, and the mark they received for 
that paper. We could then perform statistical analysis to see 
if the height of a student has any effect on their mark. Stand-
ard deviation and variance only operate on one dimension, so 
that we could only calculate the standard deviation for each 
dimension of the data set independently of the other dimen-
sions. However, it is useful to have a similar measure to find 
out how much the dimensions vary from the mean with re-
spect to each other.

Covariance is such a measure. Covariance is always meas-
ured between  two dimensions. If calculate the covariance be-
tween one dimension and itself, the result should be variance. 
So, if you had a 3-dimensional data set (x,y,z) then  it is meas-
ured as the covariance between the X  and Y  dimensions, the 
X  and Z dimensions, and the Y  and Z dimensions. Measuring 
the covariance between   X and X , or  Y   and Y , or Z  and Z  
would give you the variance of the  X,Y  and  Z  dimensions 
respectively. Similarly the covariance could be calculated for 
a 4-dimesional data set as discussed for 3-dimensional data 
set. The formula for covariance is very similar to the formula 
for variance. 

The formula for variance could also be written like this:

var(x) =  ……(Eq.4)

where it has been simply expanded the square term to show 
both parts. So given that knowledge,

cov(x,y) = …….(Eq.5)

Let for example some 2-dimensional data  is collected by ask-
ing   a bunch of students how many hours in total that they 
spent studying COSC241, and the mark that they received. 
So the first is the H dimension, the hours studied, and the 
second is the M  dimension, the mark received.

TABLE-2 2-DIMENSIONAL DATA SET AND COVARIANCE 
CALCULATION

Hours(H) Mark(M)

Data

9 39
15 56
25 93
14 61
10 50

18 75

0 32
16 85
5 42
19 70

16 66

20 80

Totals 167 749
Averages 13.92 62.42

TABLE-3 COVARIANCE            

H M ( )Hi H− ( )Hi H−

×
( )Mi M−

9 39 -4.92 -23.42 115.23
15 56 1.08 -6.42 -6.93
25 93 11.08 30.58 338.83
14 61 0.08 -1.42 -0.11
10 50 -3.92 -12.42 48.69
18 75 4.08 12.58 51.33
0 32 -13.92 -30.42 423.45
16 85 2.08 22.58 46.97
5 42 -8.92 -20.42 182.15
19 70 5.08 7.58 38.51
16 66 2.08 3.58 7.45
20 80 6.08 17.58 106.89

Total 1149.89
Average 104.54

If the value is positive, as it is here, then that indicates that 
both dimensions increase together, meaning that, in general, 
as the number of hours of study increased, so did the final 
mark. If the value is negative, then as one dimension increas-
es, the other decreases. If it had been ended up with a nega-
tive covariance here, then that would have said the opposite, 
that as the number of hours of study increased as well as the  
final mark decreased. In the last case, if the covariance is 
zero, it indicates that the two dimensions are independent of 
each other. So, the definition for the covariance matrix for a 
set of data with  n  dimensions is:    

Cn×n  = (Ci,j,Ci,j =  cov( Dim
i 
. Dimj ))Eq(6)

where Cn×n is a matrix with n  rows and n columns, and Dimx  
is the  x th dimension. The formula says is that if you have 
an n dimensional data set, then the matrix has n  rows and 
n columns (so is square) and each entry in the matrix is the 
result of calculating the covariance between two separate di-
mensions. For example, the entry on row 2, column 3, is the 
covariance value calculated between the 2nd dimension and 
the 3rd dimension.

The covariance matrix for a three dimensional data set, using 
the usual dimensions x,y  and z . Then, the covariance matrix 
has 3 rows and 3 columns, and the values are this:

 

( )Mi M C−
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EIGENVECTOR
     

Figure 1: Example of one non-eigenvector and one eigenvector

The two matrices can be multiplied together, provided they are 
compatible sizes. Eigenvectors are a special case of this. Con-
sider the two multiplications between a matrix and a vector in 
Figure 2.2. In the first, the resulting vector is not an integer 
multiple of the original vector, whereas in the second , the ex-
ample is exactly 4 times the vector. So, the vector is a vector 
in 2 dimensional space.  If you multiply this matrix on the left of 
a vector, the answer is another vector that is transformed from 
it’s original position. It is the nature of the transformation that 
the eigenvectors arise from. Imagine a transformation matrix 
that, when multiplied on the left, got the reflected vectors in the 
line y=x.  Then it can be seen  that if there were a vector that 
lay on the line y=x, it’s  reflection is itself. This vector (and all 
multiples of it, because it wouldn’t matter how long the vector 
was), would be an eigenvector of that transformation matrix.  
The eigenvectors can only be found for square matrices. And, 
not every square matrix has eigenvectors. And, given an nXn 
matrix that does have eigenvectors, there are n  of them. Given 
a 3X3  matrix, there are 3 eigenvectors.

EIGENVALUES
Looking for a transformation of the data matrix, say X(nxp) 
such that 

column vector of weights with

Maximize the variance of the projection of the observations 
on the Y variables by finding d so that the variance is as 
Var(δT X) = δT Var(X) δ is maximal . The matrix C = Var(X) 
is the covariance matrix of the Xi variables. The direction of 
d is given by the eigenvector g1 corresponding to the largest 
eigenvalue of matrix C. The second vector that is orthogonal 
(uncorrelated) to the first is the one that has the second high-
est variance which comes to be the eigenvector correspond-
ing to the second eigenvalue  and so on.

New variables Y
i
 that are linear combination of the original 

variables (x
i
):

Y
i
= a

i1
x

1
+a

i2
x

2
+…….+a

ip
x

p
; i=1..p ..Eq.(8)

The new variables Y
i
 are derived in decreasing order of impor-

tance, so they are called ‘principal components’.

The eigenvalues λ
i 
are found by solving the equation det(C-lI) 

= 0 where C is the covariance matrix. 

Let us take two variables with covariance C>0, hence
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C=               so  C-lI =                          as   
det( C-lI  ) =  ( 1-l )² - C² …………(Eq.9)
Solving this it has been found that  l

1
 = (1+C) and   l

2
 = (1- C)

APPLYING PCA METOHDS
STEP 1: GET REAL-TIME DATA SET
The actual data set is taken from Tata Motors’s sensex data 

listed in National stock exchange for last three months from 
3rd November 2013. The survey has been done for daily Open 
Price, High Price, Low Price and Close Price for sensex data 
relative to each day transaction. This is the historical data 
being taken from website of National Stock Exchange. This 
data is of lossless in nature i.e. text data the is 61×4 matrix. It 
means there are 61 rows and four columns where data set is 
4 dimensional in nature for the Open Price, High Price, Low 
Price and Close Price as the date is the index.

Suppose that the data to be reduced consists of tuples or 
data vectors described by ‘n’ attributes or dimensions. PCA 
also called (Karhunen- Loieve or K-L method), searches for 
k n-dimensional orthogonal vectors that can best be used to 
represent the data, where k<= n . The original data are thus 
projected on to a much similar space, resolving in dimension-
ality reduction. Unlike attribute subset selection, which reduc-
es the attribute set size by retaining a subset of the initial set 
of attributes, PCA combines the essence of attributes by cre-
ating an alternative, smaller set of variables. The initial data 
can then be projected onto this smaller set.

The basic procedure is that the input data are normalized, so 
that each attribute falls within the same range. This step helps 
ensure that attributes with large domain will not dominate with 
smaller domains.

PCA computes K orthogonal vectors that provide a basis for 
the normalized input data. These are unit vectors that each 
point in a direction perpendicular to the others. These vectors 
are referred to as the principal components. The input data 
are a linear combination the principal components

Sources:http://www.nseindia.com/live_market/dynaContent/
live_watch/get_quote/GetQuotejsp?symbol=TATAMOTORS\

Figure 2: NSE Sensex datafor past 3 months
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STEP 2: SUBTRACT THE MEAN
For PCA to work properly, we need to subtract the mean from 
each of the data dimensions. The mean subtracted is the av-
erage across each dimension. 

STEP 3: CALCULATE COVARIANCE MATRIX
This is done in exactly the same way as was discussed in ear-
lier section. Since the data is 4 dimensional, the covariance 
matrix will be 4 X 4 as it produces the result as  below :

PCA on the 61-by-4 data matrix X, and returns the principal 
component coefficients, also known as loadings. Rows of X 
correspond to observations, columns to variables. Covar-
iance is 8-by-4 matrix, each column containing coefficients 
for one principal component. The columns are in order of de-
creasing component variance.

COEFF =    

       

STEP 4: CALCULATE THE EIGENVECTORS AND EIGEN-
VALUES OF THE COVARIANCE MATRIX

Latent is a vector containing the eigenvalues of the covari-
ance matrix i.e. COEFF.

         

STEP 5: TO CALCULATE THE CUMULATIVE SUM OF THE 
VARIANCES

STEP 6: THE TARGET REDUCED DATA SET 

STEP7: biplot(coefs) creates a biplot of the coefficients in the 
matrix coefs. The biplot is 2-D if coefs has two columns or 
3-D if it has three columns. coefs usually contains principal 
component coefficients created with princomp, pcacov, or 
factor loadings estimated with factoran. The axes in the biplot 
represent the principal components or latent factors (columns 
of coefs), and the observed variables (rows of coefs) are rep-
resented as vectors. A biplot allows you to visualize the mag-
nitude and sign of each variable’s contribution to the first two 
or three principal components, and how each observation is 
represented in terms of those components. Biplot imposes a 
sign convention, forcing the element with largest magnitude 
in each column of coefs to be positive. This flips some of the 
vectors in coefs to the opposite direction, but often makes 
the plot easier to read. Interpretation of the plot is unaffected, 
because changing the sign of a coefficient vector does not 
change its meaning.

‘Scores’ : Scores in the matrix are the scores in the biplot. 
Scores usually contains principal component scores created 
with princomp or factor scores estimated with factoran. Each 
observation   (row of scores) is represented as a point in the 
biplot. The scores are the data formed by transforming the 
original data into the space of the principal components. The 
values of the vector latent are the variance of the columns of 
SCORE. Hotelling’s T2 is a measure of the multivariate dis-
tance of each observation from the center of the data set.

X1 = variable holds for Open Price

X2 = variable holds for High Price

X3 = variable holds for Low Price

X4 = variable holds for Close Price

Figure 3: PCA’s biplot for component1 & 2
CONCLUSIONS
Finally this shows that almost 90% of the variance is account-
ed for by the first two principal components. PCA is useful 
for finding new, more informative, uncorrelated features; it re-
duces dimensionality by rejecting low variance features. PCA 
should be applied on data that have approximately the same 
scale in each variable.
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