Important Topic of Graph Theory

* Anand N. Aghara ** Dr. Prashant Makwana

* Research Scholar at Sunrise University- Alwar

* Research Guide, Sunrise University- Alwar

ABSTRACT

This paper defines of graph and sub-graph, isomorphic graph, complete graph, path and cycle, completed bipartite graph, matrices representation of graph. This paper in the last of induction method theorem different types of walk is related with matrices.

Keywords :

Definitions:

Let G be a graph. If two (or more) edges of G have the same end vertices then these edges are called Parallel.

- A vertex of G which is not the end of any edge is called isolated.
- Two vertices which are joined by an edge are said to be adjacent or neighbours.
- The set of all neighbors of a fixed vertex of G is called. The neighbor - hood set of V and is denoted by $\mathrm{N}(\mathrm{V})$

V_{1} and V_{2} are adjacent but V_{1} and V_{3} are not. The neighborhood Set $N\left(V_{2}\right)$ of V_{2} is $\left\{V_{1}, V_{3}\right\}$.

A graph is called simple IE it has no loops and no parallel edges.

No simple graph(multi-graph)

Graph Isomorphism:

A graph $\mathrm{G} 1=\left(\mathrm{V}_{1}, \mathrm{E}_{1}\right)$ is said to be isomorphic to graph G2=($\left.V_{2}, E_{2}\right)$ if there is a one - to - one correspondence between the vertex set's V_{1} and V_{2} and a one - to - one correspondence between the edge sets E_{1} and E_{2} in such a way that if e_{1} is an edge with end vertices u_{1} and v_{1} in G_{1} then the corresponding edge e_{2} in G_{2} has it's end point's the vertices u_{2} and v_{2} in G_{2} which correspond. to u_{1} and v_{1} respectively such a pair of correspondences is called a graph isomorphism.

Pairs of isomorphic graphs

Pairs of isomorphic graphs
And following graph is not isomorphic to these graphs.

Complete graph:

Complete graph is a simple graph in which each pair of distinct vertices is joined by an edge.

(Complete graphs)

An empty (trivial) graph is a graph with no edges.
Paths and cycles.
A walk in a graph G is a finite sequence
$W=v_{0} e_{1} v_{1} e_{2} v_{2}-\cdots--v_{k-1} e_{k} v_{k}$
Whose terms are alternately vertices and edges such that, for $1 \leq i \leq k$

The edge ei has ends vi-1 and VI
Thus each edge ei is immediately preceded and succeded by the two vertices with which it is incident.

We say that the above walk w is a $v_{0}---v_{k}$ walk (walk from v_{0} to v_{5}) the vertex v_{0} is called the origin of the walk w, while v_{k} is called the terminus of w. Note that v_{0} and v_{k} need not be distinct.

In figure $w_{1}=v_{1} e_{1} v_{2} e_{4} v_{4} e_{5} v_{5} e_{6} v_{3}$ and $w_{2}=v_{1} e_{1} v_{2} e_{8} v_{3}$ Walk of length 4 and 2 respectively from v_{1} to v_{3} and from v_{1} to v_{3}. in $w_{1}, v_{1} \neq v_{3}$ then walk w_{1} is called open walk.
$W_{3}=v_{1} e_{1} v_{2} e_{4} v_{5} e_{2} v_{1}$ is closed walk if the edges $e_{1}, e_{2}--e_{r}$ of the walk $w=v_{0} e_{1} v_{1} e_{2} v_{2}--e_{r} v_{r}$ are destined then wise called a trail.
$w 4=v_{1} e_{1} v_{2} e_{8} v_{3} e_{6} v_{5}$ is called trail because e_{1}, e_{8}, e_{6} are all destined.

If the vertices of the walk all are distinct then w is called a path.

Result : - Given any two vertices v_{1} and v_{2} of a graph G, every $v_{1} v_{2}$ walk (outen'n) a $v_{1}-v_{2}$ path.

The travelling salesman problem:

Let $c=v_{1} v_{2}--v_{n} v_{1}$ be initial Hamiltonian cycle in our complete graph G, where i.j. Sneh that $1<i+1<j \leq n$. we can form a new Humiltonian cycle cij from c given by

$C i j=v_{1} v_{2}--v_{i} v_{j} v_{j}-1-v i+1 v_{j}+1 v_{j}+2--v_{n} v_{1}$
Now deleting edges $v_{v_{i}}+1$ and $v_{j} v_{j}+1$ as show in figure and $w\left(v_{i} v_{j}\right)+w\left(v_{i}+1 v_{j}+1\right)<w\left(v_{i} v_{i}+1\right)+w\left(v_{j} w_{j}+1\right)$.

The cij is of smaller length then c in this case we replace c by cij and perform a similar comparison on cij. We repeat the procedure until we reach a cycle which can't be improved upon by using the same technique.

Complete bipartite graph:
Figure: - Complete graph

Now, figure complete bipartite graph

G be a graph and set of vestex V of G and $\mathrm{V}=\mathrm{X} \cup \mathrm{Y}$ and X $\cap Y=\varnothing$ and $X \neq \varnothing, Y \neq \varnothing$ and in a way each edges of G has one end in X and second end in Y the G is called bipartite, the partitin $v=x \cup y$ is called a bipartition of G.

A complete bipartite graph is a complete graph and bipartite graph It is denote by 4 min where x has on vertices and y has n vertices.

The Matrix representation of graphs:
Let G bea graph with n vertices,v_{1}, ---- v_{n}. The adjacency matrix of G with respect to n vertices of G is the nxn matrix $\mathrm{A}(\mathrm{G})=(4 \mathrm{ij})$ where the (i1j) th entry aij is the number of edges joining the vertex v_{i} to the vertex v_{j}.

Whare simply.

Nor. Second example

Give matrix.

and in fact bij gives the number of walks of length 2 from vertex I to vertex j for example $b_{11}=5$ and the 5 walks of length 2 from vertex 1 to 1 .
$v_{1} e_{2} v_{3} e_{2} v_{1}$
$v_{1} e_{3} v_{2} e_{3} v_{1}$
$v_{1} e_{3} v_{2} e_{4} v_{1}$
$v_{1} e_{4} v_{2} e_{4} v_{1}$
$v_{1} e_{4} v_{2} e_{3} v_{1}$

As farther example b23 $=b_{32}=2$ and are 2 walks of length 2
From vertex 2 to vertex 3
$v_{2} e_{3} v_{1} e_{2} v_{3}$
$v_{3} e_{2} v_{1} e_{3} v_{2}$
There two walks of length 2

Theorem:-

Let G be a graph with n vertices $v_{1-4} v_{n}$ and let a denote the adjacency matrix of G with respect to this listing of the vertices. Let k be any positive integer and let A^{k} denote the matrix multiplication of k copies of A, Then the (i1j) the entry of A^{k} is the number of different $v_{i}-v_{j}$ walks in G of length k.

Proof.

We proof this theorem by mathematical induction on k.
For , $k=1$ then (i, j)th entry of A is the number of different $v_{i}-v_{j}$ walks in graph G of length 1

Which is clearly this result for $\mathrm{k}=1$
Now suppose this result is true for A^{k} when where $\mathrm{k} 1-\mathrm{N}-\{1\}$
Now we prove this result for $\mathrm{k}+1$ has $\mathrm{A}^{\mathrm{k}}=(\mathrm{bij})$ we are assuming that bij is the number of different walks of length k from v_{i} to v_{j} and we want to prove that if $\mathrm{A}^{k+1}=(\mathrm{cij})$ is the number of different walk of length $k+1$ from v_{i} to v_{i} set $A=(a i j)$, Since A^{k+1} $=A k \times A$, from the definition of matrix multiplication we get.
$\mathrm{Gj}=\sum_{t=1}^{n}(\mathrm{i}, \mathrm{t})$ tn element of $\left.\mathrm{A}^{k}\right) \times(+, \mathrm{j})$ the element of A
$=\sum_{t-1}^{n}$ bit $a+j$
Now every $v_{i}-v_{j}$ walks of length $k+1$ contains of a $v_{i}-v_{j}$ walks of length k. and v_{t} is adjacent to v_{i}, followed by an edge $v_{t} v_{j}$ since there are bit such walks of length k and $a+j$ such edges for each vertex $v_{t n}$ the total number of all $v_{i}-v_{j}$ walks is $\sum_{t=1}$ bit atj,
then above induction k is true $=1 \mathrm{k}+1$ is true then by indented method the proof is complete.

Conclusion:

This paper in various topic of graph theory are discussed various example and diagram.

And also connected path and cycle represent various real problems to convert easily. And last any graph converted to matrices.

REFERENCES

[1] J Clark and D A Holton, A first look at graph theory, World Scientific Pub. (1995). I [2] S W Golomb, How to number a graph, in: Graph Theory and Computing edited | by R C Read), Academic Press, New York (1972), 23-37. | [3] M Andar, S Boxwala and N B Limaye, Cordial labelings of some wheel related graphs, J. Combin Math. Combin. Comput., 41, (2002), 203-208. | [4] B. D. Acharya and S. M. Hegde. Arithmetic graphs. Journal of Graph Theory, 14:275-299, 1990| [5] Claude Berge The Theory of Graphs and its Applications. John Wiley and sons Inc.,new York, 1962.| [6] L.W. Beineke and S. M. Hegde. Strongly multiplicative graphs. Discussions Mathematicac, Graph Theory. 21:63-75, 2001. || [7] Bondy, J.A. and Mum, U.S.R., Graph Theory with Applications, Macmillan (1976). || [8] Buckley, F. and Harary, F., Distance in Graphs, Addison Wisley (1990). || [9] Chamand, G., Geller, D.. and Hetemiemi, S., Graphs with forbidden subgraphs, JCT, 10 (1971). 12-41|| [10] Cvetkovic, D., Doob, M., and Simic, S.. Generalized line graphs. 1 Graph Theory, 5 (1981). 385-399. || [11] Gross, J.L., and Harary, F., Some problems in Topological Graph Theory, Journal of Graph Theory, 4 (1980). 253-263. |

