
Volume : 2 | Issue : 11 | Nov 2013 ISSN - 2250-1991

71 X PARIPEX - INDIAN JOURNAL OF RESEARCH

Research Paper

Reorganized Data Auditing and Security

Administration for Cloud Environment

*Prasanth SP ** Ranjith K

Engineering

* IEEE student member, Department of Information Technology, V.S.B. Engineering

College, Karur, TN, India

** IEEE Student member, Department of Information Technology, V.S.B. Engineering

College, Karur, TN, India.

ABSTRACT

Cloud computing enables highly scalable services to be consumed over the Internet. Cloud services are provided on user

request basis. In cloud environment users’ data are usually processed remotely in unknown machines that users do not own

or operate. User data control is reduced on data sharing under remote machines. Cloud Information Accountability (CIA)

framework is a highly decentralized information accountability model. CIA framework provides end-to- end accountability in a

highly distributed fashion. CIA framework combines aspects of access control, usage control and authentication. Two distinct

modes are developed for auditing push mode and pull mode. The push mode refers to logs being periodically sent to the

data owner or stakeholder. The pull mode refers to the user or another authorized party can retrieve the logs as needed. JAR

(Java ARchives) files are used to automatically log the usage of the users’ data by any entity in the cloud. Distributed auditing
mechanisms are also used to strengthen user’s control. The data are sending along with access control policies and logging

policies enclosed in JAR files, to cloud service providers. Any access to the data will trigger an automated and authenticated
logging mechanism local to the JARs. The Push and Pull mode log retrieval algorithm is used for the log management

process. Integrity test and attack test mechanisms are used to manage the logs. The Cloud Information Accountability (CIA)

framework is improved to provide authentication scheme for JAR files. The system combines the data and runtime integrity
verification process. Log data analysis is provided with indexing and aggregation functions. The system includes data and
executable access control mode.

Keywords : Cloud Information Accountability (CIA), Cloud Logging model, Data

Auditing Schemes,Decentralized Data Auditing and Security Management.

1. Introduction:

Cloud computing is a recent trends in ITThat moves comput-
ing and data away from desktop and portable PCs into large
data centers. It refers to applications delivered as services
over the Internet as well as to the actual cloud infrastructure
namely, the hardware and systems software in data centers
that provide these services. The key driving forces behind
cloud computing are the ubiquity of broadband and wireless
networking, falling storage costs, and progressive improve-
ments in Internet computing software. Cloud-service clients
will be able to add more capacity at peak demand, reduce
costs, experiment with new services, and remove unneeded
capacity, whereas service providers will increase utilization
via multiplexing, and allow for larger investments in software
and hardware. Currently, the main technical underpinnings of
cloud computing infrastructures and services include virtual-
ization, service-oriented software, grid computing technolo-
gies, management of large facilities, and power efficiency.
Consumers purchase such services in the form of infrastruc-
ture-as-a-service (IaaS), platform-as- aservice (PaaS), or
software-as-a-service (SaaS) and sell value-added servic-
es to users. Within the cloud, the laws of probability give ser-
vice providers great leverage through statistical multiplexing
of varying workloads and easier management — a single
software installation can cover many users’ needs [10].

2. Related Work:
With respect to Java-based techniques for security, our
methods are related to self-defending objects (SDO).
Self-defending objects are an extension of the object-ori-

ented programming paradigm, where software objects that
offer sensitive functions or hold sensitive data are respon-
sible for protecting those functions/data. Similarly, we also
extend the concepts of object- oriented programming. The
key difference in our implementations is that the authors
still rely on a centralized database to maintain the access
records, while the items being protected are held as sepa-
rate files. In previous work, we provided a Java-based ap-
proach to prevent privacy leakage from indexing [9], which
could be integrated with the CIA framework proposed in this
work since they build on related architectures. In terms of
authentication techniques, Appel and Felten proposed the
Proof- Carrying authentication (PCA) framework. The PCA
includes a high order logic language that allows quantification
over predicates, and focuses on access control for web ser-
vices. While related to ours to the extent that it helps main-
taining safe, high-performance, and mobile code, the PCA’s
goal is highly different from our research, as it focuses on
validating code, rather than monitoring content. Another
work is by Mont etal. who proposed an approach for strong-
ly coupling content with access control, using Identity-Based
Encryption (IBE). We also leverage IBE techniques,
but in a very different way. We do not rely on IBE to bind the
content with the rules. Instead, we use it to provide strong
guarantees for the encrypted content and the log files, such
as protection against chosen plaintext and cipher text In
addition, our work may look similar to works on secure data
provenance [5], but in fact greatly differs from them in terms
of goals, techniques, and application domains. Works on
data provenance aim to guarantee data integrity by securing

Volume : 2 | Issue : 11 | Nov 2013 ISSN - 2250-1991

72 X PARIPEX - INDIAN JOURNAL OF RESEARCH

the data provenance. They ensure that no one can add or
remove entries in the middle of a provenance chain without
detection, so that data are correctly delivered to the receiver.
Differently, our work is to provide data accountability, to mon-
itor the usage of the data and ensure that any access to the
data is tracked. Since it is in a distributed environment, we
also log where the data go. However, this is not for verifying
data integrity, but rather for auditing whether data receivers
use the data following specified policies.Along the lines of
extended content protection, usage control [3] is being in-
vestigated as an extension of current access control mecha-
nisms. Current efforts on usage control are primarily focused
on conceptual analysis of usage control requirements and
on languages to express constraints at various level of
granularity. While some notable results have been achieved
in this respect [4], thus far, there is no concrete contribution
addressing the problem of usage constraints enforcement,
especially in distributed settings. The few existing solutions
are partial, restricted to a single domain, and often special-
ized [7]. Finally, general outsourcing techniques have been
investigated over the past few years [2]. Although only [8] is
specific to the cloud, some of the outsourcing protocols may
also be applied in this realm. In this work, we do not cover
issues of data storage security which are a complementary
aspect of the privacy issues.

3. Problem Statement
The design of the CIA framework presents substantial chal-
lenges, including uniquely identifying CSPs, ensuring the
reliability of the log, adapting to a highly decentralized infra-
structure, etc. Our basic approach toward addressing these
issues is to leverage and extend the programmable capa-
bility of JAR (Java ARchives) files to automatically log the
usage of the users’ data by any entity in the cloud. Users
will send their data along with any policies such as access
control policies and logging policies that they want to enforce,
enclosed in JAR files, to cloud service providers. Any access
to the data will trigger an automated and authenticated log-
ging mechanism local to the JARs. We refer to this type of
enforcement as “strong binding” since the policies and the
logging mechanism travel with the data. This strong binding
exists even when copies of the JARs are created; thus, the
user will have control over his data at any location. Such
decentralized logging mechanism meets the dynamic nature
of the cloud but also imposes challenges on ensuring the
integrity of the logging. To cope with this issue, we provide
the JARs with a central point of contact which forms a link
between them and the user. It records the error correction
information sent by the JARs, which allows it to monitor the
loss of any logs from any of the JARs. Moreover, if a JAR
is not able to contact its central point, any access to its
enclosed data will be denied.

Currently, we focus on image files since images represent a
very common content type for end users and organizations
and are increasingly hosted in the cloud as part of the stor-
age services offered by the utility computing paradigm fea-
tured by cloud computing [1]. Further, images often reveal
social and personal habits of users, or are used for archiving
important files from organizations. In addition, our approach
can handle personal identifiable information provided they
are stored as image files.

We have made the following new contributions.

4. Cloud Information Accountability
The Cloud Information Accountability framework proposed
in this work conducts automated logging and distributed
auditing of relevant access performed by any entity, carried
out at any point of time at any cloud service provider. It has
two major components: logger and log harmonizer.

There are two major components of the CIA, the first being
the logger, and the second being the log harmonizer. The
logger is the component which is strongly coupled with the
user’s data, so that it is downloaded when the data are

accessed, and is copied whenever the data are copied. It
handles a particular instance or copy of the user’s data and
is responsible for logging access to that instance or copy.

5. Cloud Logging Model
In this section, we first elaborate on the automated logging
mechanism and then present techniques to guarantee de-
pendability.

5.1. Construction of Logger
We leverage the programmablecapability of JARs to con-
duct automated logging. A logger component is a nested
Java JAR file which stores a user’s data items and corre-
sponding log files. Our proposed JAR file consists of one
outer JAR enclosing one or more inner JARs. The main re-
sponsibility of the outer JAR is to handle authentication of
entities which want to access the data stored in the JAR file.
Each inner JAR contains the encrypted data, class files to
facilitate retrieval of log files and display enclosed data in a
suitable format, and a log file for each encrypted item. We
support two options:

Ø Pure Log. Its main task is to record every access to
the data. The log files are used for pure auditing pur-
pose.

Ø Access Log. It has two functions: logging actions and
enforcing access control. In case an access request is
denied, the JAR will record the time when the request
is made. If the access request is granted, the JAR will
additionally record the access information along with the
duration for which the access is allowed.

5.2. Log Dependability Issues.
In this section, we discuss how weensure the dependability
of logs. In particular,we aim to prevent the following two types
ofattacks. First, an attacker may try to evade theauditing
mechanism by storing the JARsremotely, corrupting the
JAR, or trying toprevent them from communicating with the
user. Second, the attacker may try to compromise theJRE
used to run the JAR files.

6. Data Auditing Schemes
In this section, we describe ourdistributed auditing mech-
anism including thealgorithms for data owners to query the
logsregarding their data.

6.1. Push and Pull Mode
Push mode logs are periodically pushedto the data own-
er by the harmonizer. The pushaction will be triggered
by either type of thefollowing two events: one is that the
timeelapses for a certain period according to thetemporal
timer inserted as part of the JAR file;the other is that the
JAR file exceeds the sizestipulated by the content owner at
the time ofcreation. After the logs are sent to the dataowner,
the log files will be dumped, so as to freethe space for fu-
ture access logs. Along with thelog files, the error correcting
information forThose logs is also dumped.This push mode is
the basic mode whichcan be adopted by both the Pure Log
and theAccess Log, regardless of whether there is arequest
from the data owner for the log files.This mode serves two
essential functions in thelogging architecture: 1) it ensures
that the size ofthe log files does not explode and 2) it ena-
blestimely detection and correction of any loss ordamage
to the log files.Pull mode allows auditors to retrieve thelogs
anytime when they want to check the recentaccess to their
own data. The pull messageconsists simply of an FTP pull
command, whichcan be issues from the command line. For
naïve users, a wizard comprising a batch file can be easily
built. The request will be sent to theharmonizer, and the user
will be informed of thedata’s locations and obtain an integrat-
ed copy ofthe authentic and sealed log file.

6.2 Log Retrieval Algorithm
Pushing or pulling strategies haveinteresting tradeoffs. The
pushing strategy isbeneficial when there are a large number
ofaccesses to the data within a short period oftime. In this

Volume : 2 | Issue : 11 | Nov 2013 ISSN - 2250-1991

73 X PARIPEX - INDIAN JOURNAL OF RESEARCH

REFERENCES

[1] SmithaSundareswaran, Anna C.Squicciarini, and Dan Lin, “Ensuring DistributedAccountability for Data Sharing in the Cloud”.IEEE Transactions on Dependable And
SecureComputing, Vol. 9, No. | 4, July/August 2012. | [2] G. Ateniese, R. Burns, R. Curtmola, J.Herring, L. Kissner, Z. Peterson, and D. Song,“Provable Data Possession
at Untrusted Stores,”Proc. ACM | Conf. Computer and Comm.Security, pp. 598-609, | 2007. | [3] A. Pretschner, M. Hilty, F. Schuo¨ tz, C.Schaefer, and T. Walter, “Usage
ControlEnforcement: Present and Future,” IEEESecurity & Privacy, vol. 6, no. 4, pp. 44- | 53,July/Aug. 2008.

case, if the data are not pushed outfrequently enough, the
log file may become verylarge, which may increase cost
of operations likecopying data. The pushing mode may bep-
referred by data owners who are organizationsand need to
keep track of the data usageconsistently over time. For such
data owners, receiving the logs automatically can lighten
theload of the data analyzers. The maximum size atwhich
logs are pushed out is a parameter whichcan be easily config-
ured while creating thelogger component. The pull strategy
is mostneeded when the data owner suspects somemisuse
of his data; the pull mode allows him tomonitor the usage
of his content immediately. Ahybrid strategy can actually be
implemented tobenefit of the consistent information offered
bypushing mode and the convenience of the pullmode. Sup-
porting both pushing and pullingmodes helps protecting from
some nontrivialattacks.

7. Decentralized Data Auditing and Security
Management
The system is designed to perform datacenter management
and access control activities. Decentralized access control
monitoring is provided in the system. Object based access
monitoring is performed for the data owners.The system is
divided into six major modules. They are data owner, cloud
data center, client,JAR authentication, security and access
controland attack verification.Data owner share the data
files under thecloud environment. Data center maintains
theshared data for the data owner. Cloud clientdownloads
and access the shared data from thedata centers. JAR(Java
ARchieve) files are usedto monitor the data access under the
clients.Code and data privilege mechanism are used forthe
security process. Attack properties andshared data files are
protected from attackers.

7.1. Data Owner
The data owner shares the data files tothe clients. Data
files are provided withdifferent access permissions. Access
permissionsare assigned by the data owner based on the
usergroup. The system is designed with multipledata own-
ers.

7.2. Cloud Data Center
The cloud data center provides storagespaces for the cloud
users. Shared data filesprovided by data owners are upload-
ed to thecloud data centers. Client requests are processedby
the data centers. Access logs are maintainedunder the cloud
data centers.

7.3. Client
The client application is designed toaccess the data files
under the cloudenvironment. The data owner assigns the
client access levels.Data files are provided withreference to
he access levels. Client collects thedata files from the data
centers.

7.4. JAR Authentication
The JAR files are distributed from thedata centers with the
data files. The classes inthe JAR components are authen-
ticated by thedata centers. The JAR execution is initiated
afterthe access verification process. Authenticationmethods
are used to control anonymous JARcomponent access.

7.5. Security and Access Control
The security and access control methodsare used to veri-
fy the JAR components. Dataaccess levels are monitored
and verified withclient permissions. Client monitoring codes
areprovided with different access levels. Accesslevel based
functions are integrated in themonitoring component.

7.6. Attack Verification
The attack verification is carried outwith integrity checking
methods. Data andruntime integrity checking methods are
used inthe system. The data integrity verification isused to
check the data transmission process. Theruntime verification
is performed to verify thecode execution process.

8. Conclusions
The data centers are used to share thedata around cloud
nodes Cloud InformationAccountability (CIA) framework is
used to perform data access monitoring process. TheCIA
model is enhanced with authentication andintegrity anal-
ysis models. The system security isensured with data and
executable access controlmechanism. The CIA framework
providesdecentralized auditing model. Accountabilitymoni-
toring is carried out under the usageenvironment. Policy
based model integrates Security and accounting process.
Platformindependent accountability management model.

