Subclavian Steal Syndrome with Bovine Arch Configuration of Aorta - A Case Report

Dr.Roopa
Assistant professor, Department of Radiodiagnosis, DM WIMS, Naseera nagar, Meppadi (PO), Wayanad, Kerala-673577, India

Dr. MD. Nazrul Haque
Assistant Professor, Department of Radiodiagnosis, DM WIMS, Naseera nagar, Meppadi (PO), Wayanad, Kerala, India.-673577

ABSTRACT
Subclavian steal syndrome refers to the phenomenon of reversal of blood flow in vertebral arteries usually caused by stenosis of the proximal subclavian artery. We report a case of 61yr old female presented with history of giddiness more after excessive use of left upper limb. Subclavian steal was detected on color Doppler study and CT angiography confirmed severe stenosis of left proximal subclavian artery. Bovine arch configuration of aorta noted on CT angiography. Percutaneous Transluminal Angioplasty was done. Clinical symptoms of patient improved after the procedure.

KEYWORDS
vertebral artery, subclavian artery, bovine arch, color Doppler

Introduction
The phenomenon of subclavian steal is caused by occlusion or stenosis of the proximal subclavian artery before the origin of vertebral artery with subsequent retrograde filling of the SA via the ipsilateral vertebral artery. The designation “subclavian steal” was coined by Miller Fischer in 1961 to characterize 2 cases reported by Reivich et al. Because of the reversal of flow in the vertebral artery patient can present with neurological symptoms. Fisher dubbed the combination of retrograde vertebral flow and neurologic symptoms into subclavian steal syndrome (SSS), suggesting that blood is stolen by the ipsilateral vertebral artery from the contralateral vertebral artery. Later it was suggested that “steal” may cause brainstem ischemia and stroke secondary to arm exercise.

Case report
A 61 year old female presented to the physician with history of giddiness, which is more after left upper limb exertion. On examination, left upper limb pulses were weak. Jugular venous pressure was normal. Pulse rate was 62 per minute and blood pressure in right upper limb was 140/64mmHg and in left upper limb was 94/70mmHg. No cardiac or carotid murmur noted. Respiratory system and abdominal examination were normal. She was a known case of diabetes mellitus and dyslipidemia.

Because of discrepancy in the blood pressure in upper limbs, patient was admitted in the medicine department and detailed evaluation was done. Chest X Ray was normal. ECG was done in which ST-T wave changes were noted. Echocardiogram showed LV diastolic dysfunction, trivial mitral regurgitation and trivial aortic and tricuspid regurgitation. Aortic and tricuspid valves were mildly thickened.

Carotid Doppler study was done to evaluate carotid vessels and vertebral vessels. Carotid Doppler was done on high-resolution B-mode duplex ultrasound (GE Voluson S6) with color and pulsed wave Doppler using L7–4MHz linear array transducer.

Carotid duplex ultrasound examination revealed normal velocities and normal spectral waveform in right CCA, ICA, ECA and vertebral artery. Doppler study of left CCA, ICA and ECA were also normal. Direction of flow in left vertebral artery is opposite to that seen in left common carotid artery. So we suspected subclavian steal syndrome. CT Angiography of head and neck was performed which revealed severe stenosis of left proximal subclavian artery and bovine arch was noted i.e. left common carotid artery originating from right brachiocephalic trunk. 3D reconstructed image was showing severe stenosis of left proximal Subclavian artery and bovine arch configuration of aorta. Subsequently patient underwent Percutaneous transluminal angioplasty (PTA). After PTA, patient symptoms were relieved.

Figure 1(a) Color Doppler ultrasound showing the normal antegrade flow, velocity and spectral waveform in right common carotid artery.

Figure 1(b) Color Doppler ultrasound showing the normal antegrade flow, velocity and spectral waveform in right internal carotid artery.
Figure 1(c) Color Doppler ultrasound showing the normal antegrade flow, velocity and spectral waveform in the right External carotid artery.

Figure 1(d) Color Doppler ultrasound showing the normal antegrade flow, velocity and spectral waveform in right vertebral artery.

Figure 1(e) Color Doppler ultrasound showing the flow direction in left vertebral artery which is opposite to the flow seen in left common carotid artery.

Figure 2(a) Color Doppler ultrasound showing the normal antegrade flow, velocity and spectral waveform in the left common carotid artery.

Figure 2(b) Color Doppler ultrasound showing the normal antegrade flow, velocity and spectral waveform in left internal carotid artery.

Figure 2(c) Color Doppler ultrasound showing the normal antegrade flow, velocity and spectral waveform in the left external carotid artery.

Figure 2(d) Color Doppler ultrasound showing reversal of flow in left vertebral artery.

Figure 2(a) Color Doppler ultrasound showing the normal antegrade flow, velocity and spectral waveform in the left external carotid artery.

Figure 3(a) Axial CT Angiography showing severe stenosis of left proximal subclavian artery.
Subclavian steal syndrome is reversal of flow in the ipsilateral vertebral artery due to stenosis of proximal subclavian artery. The arm may be supplied by retrograde flow in the vertebral artery at the expense of vertebrobasilar circulation. This reversal of flow in vertebral artery leads to neurological symptoms like giddiness. The neurological symptoms will be aggravated by excessive use of ipsilateral upper limb. Color Doppler ultrasound is the preferred examination for subclavian steal syndrome which can detect reversal of flow in the vertebral artery. Normally the flow in vertebral arteries is antegrade and cephalad i.e. towards the brain, similar to the common carotid artery. Normal peak systolic velocity in vertebral arteries is 20 to 60 cm/sec. There are four types of abnormal wave patterns in vertebral artery on color Doppler study in subclavian stenosis.

Discussion
Subclavian steal syndrome is a common vascular disease which can present with neurological symptoms which depend upon the collateral circulation of the vertebobasilar system. CT Angiography can better evaluate the subclavian artery which is difficult to evaluate on color Doppler. There are 20 different types of aortic arch configurations, of which Bovine arch type, left common carotid artery shares a common origin with brachiocephalic trunk. Other less common variant which is also known as bovine arch, in which left common carotid artery originates from brachiocephalic trunk.

Conclusion
Subclavian steal syndrome is the common vascular disease which can present with neurological symptoms which depend upon the collateral circulation of the vertebobasilar system. CT Angiography can better evaluate the subclavian artery which is difficult to evaluate on color Doppler. There are 20 different types of aortic arch configurations, of which Bovine arch configuration of the aorta is most common. We reported this case because of the rarity of combination of subclavian stenosis and bovine arch configuration of aorta.

REFERENCES