

Determination of LC₅₀ of an organophosphate pesticide in a freshwater catfish, *Heteropneustes fossilis* Bloch

Santanu Debnath

Fisheries and Aquaculture Extn. Laboratory Dept. of Zoology, University of Kalyani, Kalyani- 741235, W.B, India.

A.K. Panigrahi

Fisheries and Aquaculture Extn. Laboratory Dept. of Zoology, University of Kalyani, Kalyani- 741235, W.B, India.

ABSTRACT

In the present study 96 h LC₅₀ (Lethal concentration) value of Chlorpyrifos 20% EC (an organophosphate) was determined for a fresh water catfish, *Heteropneustes fossilis*. The average length and average weight of the fishes were 9.2 ± 1.5 cm and 12.4 ± 2.0 g respectively. For determination of LC₅₀ value, following 9 chlorpyrifos concentrations 0.5, 0.75, 1.00, 1.50, 2.00, 2.50, 3.00, 3.50, 4.00 mg/l and a control were taken. A set of 30 acclimatized fishes were chosen randomly for toxicity determination and mortality rate was determined at the end of 24, 48, 72 and 96 h. According to Finney's probit analysis (1971), LC₅₀ of Chlorpyrifos 20% EC to *Heteropneustes fossilis* for 96 h of exposure was determined as 1.776 mg/l with lower and upper confidential limits (95%) as 1.583 mg/l and 1.977 mg/l respectively.

KEYWORDS

96 h LC₅₀, Chlorpyrifos, *Heteropneustes fossilis*, probit analysis.

INTRODUCTION

Pesticides are one of the most hazardous chemicals to the environment. Various types of pesticide are used extensively in agricultural fields to protect the crops from injuries or damages caused by different types of pest. These chemicals may reach other ecological sections like lakes, reservoirs, rivers and surrounding water areas through rains and winds affecting a number of organisms other than primary target. According to Livingstone (2001), the injuries of pesticides to aquatic environments are incontestable and the significant increase of this chemical discharge in the water bodies from surrounding area has led to deleterious effects for inhabiting aquatic organisms. The fishes act as a bio-indicator because they respond very quickly against the changes in the aquatic environment and thus they play a major role in understanding different types of pollution of a water body. The 96 h LC₅₀ tests are conducted to measure the susceptibility and survival potentials of organisms to toxic substances.

MATERIALS AND METHODS

Test chemical: Technical grade Chlorpyrifos (20% EC) [IUPAC name: 0,0-diethyl 0-3,5,6-trichloro-2-pyridylphosphorothioate] with trade name PYRIFEX (manufactured by – SAFEX chemicals, INDIA Ltd.) was purchased from local market.

Test organism: *Heteropneustes fossilis* Bloch is one of the most important species of freshwater catfish cultured in India. The fishes were collected from local market for experiments. The average length and average weight of the fishes (both sexes) were 9.2 ± 1.5 cm and 12.4 ± 2.0 g respectively. At first the fishes were given prophylactic treatment by bathing them twice in 0.05% KMnO₄ solution for 4-5 minutes to avoid dermal infections. The fishes were then acclimatized for 15 days under laboratory conditions before exposure to pesticide.

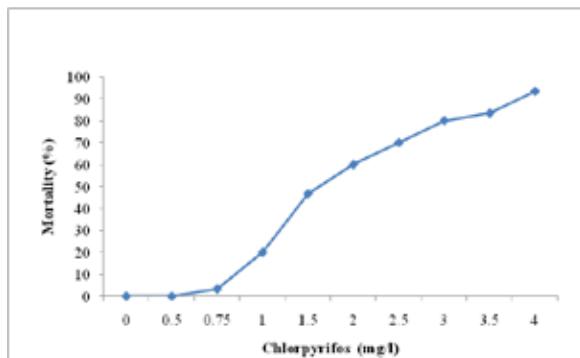
Analysis of toxicity was conducted in the rectangular glass aquaria (30x60x30 cm). The supply of oxygen into the water of aquariums was done by electrical aerators. The fishes were fed with commercial pelleted food, 2-3 times per day during the acclimatization period and the feeding was stopped 24 h prior to acute toxicity test. The water was renewed daily and the faecal matter and other waste materials were siphoned off daily.

The acute toxicity bio assay to determine 96 h LC₅₀ value of chlorpyrifos in *H. fossilis*. The stock solution of chlorpyrifos

was prepared by dissolving the analytical grade of chlorpyrifos 20% EC in acetone. For determination of LC₅₀ value, following a range finding test of nine chlorpyrifos concentrations 0.5, 0.75, 1.00, 1.50, 2.00, 2.50, 3.00, 3.50, 4.00 mg/l and a control were chosen for *H. fossilis*. The control group was used for comparison by using the tap water containing acetone (the volume of acetone used was the same as used for preparing the chlorpyrifos solution at different concentration). A set of 30 acclimatized fish specimens were chosen randomly and then exposed to different concentration grade of chlorpyrifos. Separate group of 30 fishes served as control.

The mortality rate was determined at the end of 24, 48, 72 and 96 h. In this study the acute toxic effect of chlorpyrifos 20% EC on *Heteropneustes fossilis* was determined by the use of Finney's probit analysis LC₅₀ determination method (1971). Confidential limits (upper and lower) were calculated and also used SPSS, version 17.0 for LC₅₀ value of chlorpyrifos 20% EC with the help of Probit analysis.

The physico-chemical characteristics of water were determined by standard methods of APHA (1995) and Trivedi and Goel (1984). The water temperature of different experimental tanks was ranged from 27.91 to 28.90 °C; the pH of water ranged between 6.90 and 7.72; the dissolved oxygen values varied from 3.81 to 3.97 mg/l and that of alkalinity from 77.40 to 92.81 mg/l.


RESULTS AND DISCUSSION

The relation between the organophosphate pesticide (Chlorpyrifos) concentration and mortality rate of the fresh water catfish *Heteropneustes fossilis* according to SPSS analysis were shown in the **Table 1**. The results indicated different mortality rate of fishes which increased with the corresponding increase in concentration of Chlorpyrifos. The mortality in control treatment and 0.50 mg/l concentration of Chlorpyrifos were virtually absent.

According to Probit analysis by Finney (1971), the median lethal concentration (LC₅₀) of Chlorpyrifos 20% EC to *Heteropneustes fossilis* for 96 h of exposure was calculated as 1.776 mg/l. The lower and upper lethal confidence limits (95%) for chlorpyrifos indicate a range of 1.583 mg/l to 1.977 mg/l within which the concentration response for 96 h exposure (**Table 2**). So it is concluded that higher percentage of mortal-

ity occurred with the increase in concentration and exposure period.

Susceptibility of *Heteropneustes fossilis* to the different dose of Chlorpyrifos was duration and concentration dependent as mortality increased with an increase in its concentration. Almost same result was observed by Srivastavet. al., (2012) while experimenting the morpho-toxicology of Chlorpyrifos to a freshwater catfish, *Heteropneustes fossilis*. The results of this study may help to understand the acute toxicity of the pesticide in the field and may work as early warning indicators of pesticide toxicity in the freshwater catfish, *Heteropneustes fossilis*.

Figure 1: Percentage mortality of *H. fossilis* at 96 hrs. of exposure of different concentrations of chlorpyrifos.

Table 1: Correlation between the chlorpyrifos concentration and the mortality rate of *Heteropneustes fossilis* at 96 hours of exposure.

Concentration (mg/l)	Number of fishes	Observed responses	Expected responses	Residual	Probability
0.00	30	0	0.000	0.000	0.000
0.50	30	0	0.450	-0.450	0.015
0.75	30	1	2.100	-1.100	0.070
1.00	30	6	4.883	1.117	0.163
1.50	30	14	11.589	2.411	0.386
2.00	30	18	17.420	0.580	0.581
2.50	30	21	21.628	-0.628	0.721
3.00	30	24	24.460	-0.460	0.815
3.50	30	25	26.320	-1.320	0.877
4.00	30	28	27.533	0.467	0.918

Table 2: LC₅₀ (96 h) value of chlorpyrifos with lower and upper (95%) confidence limits.

Point	Estimated LC values and confidence limits		
	Concentration (mg/l)	95% confidence limits	
LC 1.00	0.456	0.309	0.594
LC 5.00	0.679	0.506	0.832
LC 10.00	0.840	0.657	0.998
LC 15.00	0.969	0.783	1.130
LC 50.00	1.776	1.583	1.977
LC 85.00	3.253	2.849	3.885
LC 90.00	3.754	3.233	4.614
LC 95.00	4.641	3.886	5.977
LC 99.00	6.910	5.456	9.768

REFERENCES

APHA, 1995. Standard Methods for Examination of Water and Wastewater (19th Edition). APHA, AWWA, WPCF, Washington, D.C. || Chindah, A.C., F. D. Sikoki, AKPU Vincent and Ijeoma, 2004. Toxicity of an Organophosphate Pesticide (chlorpyrifos) on a common Niger Delta Wetland Fish -Tilapia guineensis(Bleeker 1862). *J. Appl. Sci. Environ. Mgt.* 2004 Vol. 8 (2) 11 – 17. || Dembele, K., E. Haubrige, and C. Gaspar. 2000. Concentration effects of selected insecticides on brain acetylcholinesterase in the common carp (*Cyprinus carpio*L.). *Ecotoxicology and Environmental Safety*, 45: 49-54. || Finney, D. J. 1971. *Probit Analysis*. Cambridge University press, London. pp: 333. || Halappa, R and M. David, 2009. Behavioural Responses of the Freshwater Fish, *Cyprinus carpio*(Linnaeus) Following Sublethal Exposure to Chlorpyrifos. *Turk. J. Fish. Aquat. Sci.* 9: 233-238 (2009). || Livingstone, D. R. 2001. Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. *Bulletin of Marine Pollutants*, 42: 656-666. || Nekoubin, H. and Gharedaashi, E. 2012. Determination of LC50 of Lead Nitrate and Copper Sulphate in common carp (*Cyprinus carpio*). *American-Eurasian Journal of Toxicological sciences*, 4(2): 60-63. || Srivastav, A. K., S. K. Srivastava, S. Tripathi, D. Mishra and S.K. Srivastav. 2012. Morphotoxicology of chlorpyrifos to prolactin cells of a freshwater catfish, *Heteropneustes fossilis*. *Acta Scientiarum, Biological Sciences*. vol. 34, no. 4, pp. 443-449, Oct.-Dec., 2012. || Trivedi, R.K. and Goel, P.K. 1984. Chemical and biological methods for water pollution studies. Environmental publishers, Karad, India. |