Research Paper

Engineering

Reliability Operation of Hybrid Electric Vehicle Using Dc-Dc Converter

Arupananda Pradhan

PG Scholar Department of Electrical Engineering, College of Engineering & Technology, Bhubaneswar, Odisha,India.

ABSTRACT

An HEV/EV unlike conventional vehicle, which depends solely on the IC engine for the traction power, utilizes electrical energy storage in combination with or without the ICE to provide the required traction power. Thus it facilitates the improvement in the energy conversion of the vehicle thereby increasing the efficiency and drivability and at the same time reducing the emissions. Furthermore the integration of the electrical storage system also makes the provision for the regeneration during braking which can further boost up the efficiency of the overall system. Electric vehicle drive train mainly consists of Electrical storage system (ESS, Bidirectional DC-DC Converters, Inverter, Electric motor and vehicle controller. One of the main considerations for the EV drive train is to improve the efficiency of the motor drive. This can be done by increasing the voltage level of the ESS and thereby reducing the high currents and thus the associated losses. The increase in voltage level of the ESS can be done by the addition of the more number of cells in the battery back of the ESS of EV. Although it increases the voltage level but at the voltage level but at the same time it also increases the weight, size and cost of the system which is obviously not a desirable option for a vehicular application having constraints on its size and weight. The other option is to use a bidirectional DC-DC converter. Bidirectional DC-DC converters boost up the voltage level and hence the losses. Also Bidirectional DC-DC converter facilitates the provision for backward power flow into the ESS during regenerative braking and hence further increasing the efficiency. These two features of the bidirectional DC-DC converter makes it a better option for power conversion in the EV drive train.

KEYWORDS

DC-DC Converters, Electric Vehicles, PSSM, FOC, Hybrid Electric Vehicles, Bidirectional DC-DC Converter.

I.INTRODUCTION

With ever increasing concerns on energy crisis and

Environmental protection, the electric vehicles (EVs) are attracted more and more attention in recent years. The use of DC/DC converters is essential in hybrid Vehicles. Mainly, there exist two types of DC/DC converters onboard of a Hybrid Electric Vehicle (HEV). The first is a low power bidirectional DC/DC converter which connects the high voltage dc-link with a low voltage battery used to supply low power loads. The second is a high power bidirectional DC/DC converter used to connect the main energy storage unit with the electric traction drive system.

The purpose of this paper is to present a DC-DC Converter for HEVs.

II.DC-DC CONVERTERS FOR ELECTRIC VEHICLES

DC-DC Converters in an electric vehicle may be classified into unidirectional and bidirectional converters Fig.1 shows the applications of DC-DC converters in electric vehicles. Unidirectional DC-DC converters cater to various onboard loads such as sensors, controls, entertainment, utility, and safety equipments. They are also used in DC motor drives electric traction. Bidirectional DC-DC converters find applications in places where battery charging, regenerative braking, and backup power are required. The power flow in a bidirectional converter is usually from a low voltage end such as battery or a super capacitor to a high voltage side and is referred to as boost operation. During regenerative braking, the power flows back to the low voltage bus to recharge the battery (buck mode). As a backup power system, the bidirectional DC-DC converter facilitates the safe operation of the vehicle when ICEs or electric drives fail to drive the motor. Due to the aforementioned reasons, high power bidirectional DC-DC converters have gained a lot of importance in the recent past. Electric motors used for propulsion can be categorized as DC and AC motors. Earlier, even though DC motors were less efficient, they were preferred for electric propulsions as they were simpler to control. However, with the development of control techniques for AC motors, hybrid vehicles make use of AC motors. DC motor drives are usually used in steep trolleys, ropeways, and locomotives, whereas AC motors are used in EVs and HEVs. The latest hybrid vehicles such as Toyota Prius and Honda Civic/Accord use permanent magnet synchronous motor (PMSM). PMSM have high power density, high efficiency, and are usually controlled by field-oriented control (FOC). AC motors in EVs and HEVs are fed by inverters which in-turn is fed by a high voltage DC-DC converter. This arrangement is shown in Fig. 2. The output of the battery (a stack of number of Nickel-Metal Hydride cells) is connected to the input of a customized integrated DC-DC converter, which converts the low voltage to a high voltage to feed the inverter and later the high power PMSM For example, in the latest 2007 version of Toyota Prius, the low voltage bus is at 201.6 V (Ni-MH 288 battery output), which is converted into 500 V by a simple boost converter to feed a 50 kW (1200-1540 rpm) PMSM.

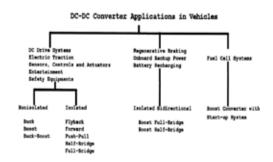
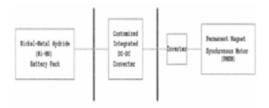



Figure 1. Applications of DC-DC converters in Electric vehicles

Volume : 4 | Issue : 3 | Mar 2015

Figure 2. Power electronic circuit arrangement in HEVs.

Both unidirectional and bidirectional DC-DC converters are preferred to be isolated to provide safety for the loading devices. In this view, most of the DC-DC converters incorporate a high frequency transformer.

Inclusion of a transformer leads to the following problems:

- 1. Leakage inductance of the transformer leads to high voltage stresses across the converter switches and diodes.
- 2. Increases converter area, volume, weight, and cost.
- 3. Increases EMI.

III. CONCLUSION

Apart from finding solutions to reduce device stresses and to improve the converter efficiency, many other challenges are posed for a power electronic circuit designer. DC-DC converters in EVs must be precisely controlled for safety of the passengers. Almost all of the DC-DC converters presented in this Section have complex drive control. Moreover, the dynamics of each circuit must be studied and rigorously tested before selecting a DC-DC converter topology, the efficiency of the converter must be evaluated in comparison with the Overall efficiency of the EV. Based on this evaluation, hard-switched or soft-switched topology must be chosen. Thorough investigation of DC-DC converters regarding EMI Must be carried out to satisfy the standard regulations. Temperature effects must be considered to ensure a safe and reliable operation.

DC-DC converters play an important role in efficiently distributing electric power in vehicles. With increasing demand for power electronics in electric vehicles, it may be concluded that DC-DC converters will continue to play a major role in the technological advancement of vehicles in the future.

REFERENCES

[1] Atul Kumar & Prerana Gaur, "Operation of DC/DC Converter for Hybrid Electric Vehicle, "International Journal of Electronic & Electrical Engineering, ISSN 0974-2174, Volume 7, Number 4(2014), pp. 335–340. | [2] Sonya Gargies, Hongjie Wu and Chris Mi, "Isolated Bidirectional DC-DC Converter for Hybrid Electric," in Proc. IEEE IAS, Hong Kong, China, Volume 3, Oct. 2005, pp. 2021–2028. | [3]H.J. Chiu and L.W. Lin, "A bidirectional dc-dc converter for fuel cell electric vehicle driving system," IEEE Trans. Power Electron., Volume 21, Issue 4, July 2006, pp. 950 – 958. | [4] H. Matsuo, W. Lin, F. Kurokawa, T. Shigemizu, and N. Watanabe, "Characteristics of the multiple-input dc-dc converter," IEEE Trans. Ind. Electron., Vol.51, No.3, June 2004, pp. 625-630. | [5]. Dakshina M. Bellur and Marian K. Kazimierczuk, "DC-DC Converters for Electric Vehicle Applications," in Proc. IEEE APEC, Dallas, TX, July.2007, pp. 286-293.