An article on imaging of posterior fossa mass lesions in adults

Dr.C.Nellaippan
Associate professor of radiodiagnosis department, Tirunelveli medical college hospital, Tirunelveli, Tamilnadu

Dr.S.Nancydora
Associate professor of radiodiagnosis department, Tirunelveli medical college hospital, Tirunelveli, Tamilnadu

ABSTRACT
Posterior fossa mass lesions in adults are multiple. Cerebellopontine angle lesions are common. Cerebellar parenchymal lesions can also occur. In this article we discuss about differential diagnosis of posterior fossa mass lesions in adults. Cerebellar gangliocytoma, meningioma are discussed in detail.

KEYWORDS
computed tomography, magnetic resonance imaging, cerebellopontine angle, gangliocytoma, meningioma

INTRODUCTION
Radiologic assessment of posterior fossa tumors may be achieved with several imaging techniques. Computed tomography (CT), MRI are the standard techniques. Nuclear scans, PET scan, angiography are usually used. The radiographic features of calcification are usually well demonstrated on CT scan. MRI is particularly useful in distinguishing intra axial from extra axial lesions. The location and extent of masses can be defined using C T and MRI. In this article, we discuss two mass lesions in the posterior fossa in adults.

Case 1:
38 years female admitted in our hospital with headache and ataxia. CT scan was taken. It shows a hyper dense mass lesion in the posterior fossa on left side causing fourth ventricle compression and mild hydrocephalus (fig1). On contrast administration, the lesion shows good enhancement (fig2). MRI - Brain was taken for further evaluation. T1 hypo intense, T2 hyper intense extra axial lesion without internal auditory canal component is seen (fig3,4,5). On contrast, the lesion shows very good enhancement without cystic components (fig6). Radiological differential diagnosis includes meningioma, acoustic nerve/facial nerve schwannoma. The patient underwent surgical removal. HPE is suggestive of fibroblastic menigioma.

Case 2:
43 years old female admitted with headache and ataxia. CT scan was taken. It shows mixed dense mass lesion with predominant hypo dense areas in the midline of cerebellum causing compression of fourth ventricle and minimal hydrocephalus (fig7). MRI - Brain was taken for the future evaluation. It shows T1 mixed intense, T2 hyper intense lesion, not suppressed in FLAIR lesion in the midline cerebellum compressing fourth ventricle (fig8,9,10). MRI FLAIR also shows prominent folia like pattern within the lesion (fig10). On contrast no significant enhancement of mass seen (fig11,12). The radiologic differential diagnosis include ependymoma, cerebellar astrocytoma, rarely dysplastic gangliocytoma. The patient underwent surgical removal of mass. HPE is suggestive of dysplastic gangliocytoma.

DISCUSSION
Posterior fossa tumour has a very different differential in an adult as opposed to a child.

from melanoma, thyroid malignancies, and renal cell cancer. Haemangioblastoma is most common primary parenchymal cerebellar tumour. Acoustic tumours and medulloblastomas are rare in the posterior fossa of adults (<1% all tumours).

A. James Barkovich. Philadelphia, PA : Lippincott Williams & Wilkins (2005) found that brain tumor distribution varies with age as follows (1)

0 to 3 years of age⇒ supratentorial > infratentorial
4 to 10 years of age⇒ infratentorial > supratentorial
10 to early adult hood⇒ infratentorial = supratentorial
adults⇒ infratentorial > supratentorial

James G. Srimiotopoulos, MD ,ancy Chang Yue, MD ,isabet-bj Rushing(1993) have shown the percentage of masses of cerebellopontine angle as follows

Classification of posterior fossa meningioma “Sekhar and Wright” (2)

<table>
<thead>
<tr>
<th>Masses of the CPA</th>
<th>PercentageMass of Cases (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acoustic (vestibular) schwannoma</td>
<td>80-90</td>
</tr>
<tr>
<td>Meningioma (petrous/tentorial)</td>
<td>10-15</td>
</tr>
<tr>
<td>Epidermoid inclusion cyst</td>
<td>5-9</td>
</tr>
<tr>
<td>Arachnoid cyst</td>
<td><1</td>
</tr>
<tr>
<td>Lipoma (lipomatoushamartoma)</td>
<td><1</td>
</tr>
<tr>
<td>Aneurysm</td>
<td><1</td>
</tr>
<tr>
<td>Ependymoma</td>
<td><1</td>
</tr>
<tr>
<td>Choroid plexus papilloma</td>
<td><1</td>
</tr>
<tr>
<td>Metastasis</td>
<td><1</td>
</tr>
</tbody>
</table>

Dr.S.Nancydora
Associate professor of radiodiagnosis department, Tirunelveli medical college hospital, Tirunelveli, Tamilnadu
pial-cortical blood supply are critical factors for the development of peritumoral brain edema. In practicality, a balance between good functional outcome and extent of resection is important for posterior cranial fossa meningiomas in proximity to critical structures as shown by Vijayakumar Javalkar, M.D., Anirban Deep Banerjee, M.D., and Anil Nanda, M.D., F.A.C.S in 2012.

Andrea Giorgianni, Carlo Pellegrino, Alessandro De Benedictis (2013) found that the dysplastic gangliocytoma is hypointenues on unenhanced computed tomographic (CT) images. In such cases, the only diagnostic clue may be the mass effect, which manifests as compression of the fourth ventricle, effacement of the cerebellopontine angle cistern and hydrocephalus.

MRI reveals the characteristic appearance of Lhermitte-Duclos Disease.

MR imaging reveals a cerebellar mass with a typical striated, corduroy, or tiger-striped folial pattern that consists of alternating bands on both T1- and T2-weighted images. The bands are hyper- and isointense relative to gray matter on T2-weighted images and iso- and hypointense on T1-weighted images. Calcification is an uncommon finding, but it has been reported.

Shinagare, MD, Nirupama K. Patil, MD, and S. Z. Sorte, MD (2009) have shown that most dysplastic gangliocytomas do not enhance. Recognition of the disease is of particular importance, as the frequent but under-reported coexistence with Cowden syndrome. Clinical and apparative investigation to detect or exclude concomitant malignancies should be prompted. Joachim Klischa, Freimut Juengling, Joachim Spreera, Donatus Kocha (2001) found that although the exact pathophysiological explanation for the signal characteristics of LDD in diffusion-weighted imaging/perfusion-weighted imaging, 1H MRS, FDG-PET, and 201-Tl SPECT remains unknown, the pathophysiology of this very rare entity may be answered by functional imaging studies of the lesion in future.

CONCLUSION

Posterior fossa mass lesions are different in adults than children. MRI is the best modality for evaluating posterior fossa lesions highlighted by above cases. Meningioma can occur anywhere in posterior fossa. Dysplastic cerebellar gangliocytoma is a rare entity. Non enhancing solid mass lesion inside cerebellar parenchyma between age of 30 to 50 should raise the possibility of this disorder in the radiologist mind.

Fig1-CT shows hyperdense mass in left posterior fossa

Fig2-CT shows good enhancement of mass

Fig3-MRI T1W shows hypointense mass of posterior fossa

Fig4-MRI T2W shows hyperintense mass lesion
Fig 5 - MRI FLAIR shows hyperintense mass.

Fig 6 - MRI contrast shows good enhancement.

Fig 7 - CT shows hypodense mass in midcerebellum.

Fig 8 - MRI T1W shows hypointense mass.

Fig 9 - MRI T2W shows hyperintense mass.

Fig 10 - MRI FLAIR - hyperintensity with prominent folia like pattern.
Fig11 MRI axial contrast-no significant enhancement

Fig12-MRI coronal contrast-no significant enhancement

REFERENCES