Pressure - Volume Behavior of Mgo At Elevated Temperatures And Pressure

Dr. Mahendra Mehra	Govt. Motilal Vigyan Mahavidyalaya Bhopal M.P. India 462008
Seema Rajput	Govt. Motilal Vigyan Mahavidyalaya Bhopal M.P. India 462008
P.C. Mathur	Govt. Motilal Vigyan Mahavidyalaya Bhopal M.P. India 462008
The isothermal equation isothermal EOS is used Equation of state is also These derivatives are used much less accurate as co which contain B T and temperature and also at series. A precise descrip	of state (EOS) of solids have played an important role in the field of high-pressure physics. An study the relationship between pressure P and volume compression at a given temperature. sed to study the isothermal bulk modulus BT and its pressure derivatives Bo° and $\mathrm{Bo}^{\prime \prime}$, respectively. as input parameters in various phenomenological forms. The values of Bo" for various solids are pared to the values of $B T$ and $B 0^{\circ}$. In the present work we consider six different forms of EOS only. Using these forms we have studied the pressure-volume relationships for MgO at room evated temperatures ($500-1500 \mathrm{~K}$). Periclase is the end member of the (Mg, Fe) O solid solution of the pressure, volume and temperature ($\mathrm{P}, \mathrm{V} _$T) relationship of MgO is therefore essential.

KEYWORDS	Equation of State (EOS), Isothermal Bulk Modulus, Isothermal Pressure Derivatives

Introduction

MgO has low chemical reactivity and it is stable in a large pressure and temperature range, which makes it an ideal pressure calibrant. Values of B_{T} and B_{o} estimated corresponding to different temperatures is used appropriately as input data. Isaak et al. [1] have determined the thermo elastic properties of MgO at high temperatures and high pressure using the potential induced breathing (PIB) electron gas model based on the first principles approach. The ab-initio method of Isaak et al. is based on the detailed calculations of the Helmholtz energy F versus volume at constant temperature T at selected temperatures. By taking the appropriate derivatives of F, values of pressure P, isothermal bulk modulus BT and its pressure derivative Bo` are numerically determined. The results thus obtained have been found to present good agreement with the measurements of the temperature dependence of thermo elastic properties $[2,3]$. The values of P, BT and Bo° for MgO at 500 , 1000 and 1500 and down to a compression of $\mathrm{V} / \mathrm{N} 0=0.60$ determined by Isaak et al. have been reported in the tabular form by Anderson [4].

The various phenomenological forms for the isothermal equation of state are given below for ready reference

$$
\begin{aligned}
& \mathbf{P}=\frac{B_{0}}{\left(B_{0}^{+}+1\right)}\left\{\left(\exp \left(B_{0}^{+}+1\right)\left(1-\frac{V}{V_{0}}\right)\right\}-1\right] \\
& \mathbf{B}_{T}=B_{0}\left(\frac{V}{V_{0}}\right) \exp \left[\left(B_{0}^{+}+1\right)\left(1-\frac{V}{V_{0}}\right)\right] \\
& \mathbf{B}_{\mathrm{T}}^{\prime}=\left(B_{0}^{+}+1\right) \frac{V}{V_{0}}-1
\end{aligned}
$$

The above equation is the usual Tait equation (UTE) frequently reported in the literature $[6,7,9,11]$. The UTE has been reproduced recently by Kumar [12] using the Chopelas-Boehler relationship [13] according to which $\left(\delta_{T}+1\right)$ varies as V / N_{0}, and taking the Anderson Gruneisen parameter $\delta_{\mathrm{T}}=\mathrm{d} K T / \mathrm{d} P[14]$.

$$
\begin{aligned}
& \left.\mathrm{P}=\left[\frac{\mathrm{ZB}_{0}\left(\frac{v_{\mathrm{G}}}{}\right)^{-\frac{4}{T}}}{\left(3 \mathrm{~B}_{0}-5\right)}\right] \exp \left\{\left(\frac{\mathrm{B}_{0}-5}{3}\right)\left(1-\frac{\mathrm{v}}{\mathrm{~V}_{0}}\right)\right\}-1\right] \\
& \mathrm{B}_{\mathrm{T}}=\mathrm{B}_{0}\left(\frac{\mathrm{~V}}{\mathrm{~V}_{0}}\right)^{\frac{-4}{3}} \exp \left\{\left(\mathrm{~B}_{0}-\frac{5}{3}\right)\left(1-\frac{\mathrm{V}}{\mathrm{~V}_{0}}\right)\right\}+\frac{4}{3} \mathrm{P} \\
& \mathrm{~B}_{\mathrm{T}}^{\prime}=\left(1-\frac{4 \mathrm{P}}{3 \mathrm{~B}_{\mathrm{T}}}\right)\left[\left(\mathrm{B}_{0}{ }^{\circ}-\frac{5}{3}\right) \frac{\mathrm{V}}{\mathrm{~V}_{0}}+\frac{5}{3}\right]+\frac{16}{9} \frac{\mathrm{P}}{\mathrm{~B}_{\mathrm{T}}}
\end{aligned}
$$

The above equation is the well known Born Mie equation based on an inverse power form for the short-range repulsive potential energy [4, 15].]

$$
\begin{aligned}
& \mathbf{P}=\left[\frac{\left.3 \mathrm{~B}_{0}\left(\frac{\mathrm{~V}}{\mathrm{~V}_{0}}\right)\right)^{\frac{-}{5}}}{\left(3 \mathrm{~B}_{0}-5\right)}\right]\left[\exp \left\{\left(\frac{3 \mathrm{~B}_{0}-5}{3}\right)\left(1-\frac{\mathrm{V}}{\mathrm{~V}_{6}}\right)\right\}-1\right] \\
& \mathrm{B}_{\mathrm{T}}=\mathrm{B}_{0}\left(\frac{\mathrm{~V}}{\mathbf{V}_{0}}\right)^{\frac{-1}{3}} \exp \left\{\left(\mathrm{~B}_{0}{ }^{`}-\frac{5}{3}\right)\left(1-\frac{\mathrm{V}}{\mathrm{~V}_{0}}\right)\right\}+\frac{4}{3} \mathrm{P} \\
& \mathrm{~B}_{\mathrm{T}}^{\prime}=\left(1-\frac{4}{3} \frac{\mathrm{P}}{\mathrm{~B}_{\mathrm{T}}}\right)\left[\left(\mathrm{B}_{0}{ }^{\circ}-\frac{5}{3}\right) \frac{\mathrm{V}}{\mathrm{~V}_{0}}+\frac{5}{3}\right]+\frac{16}{9} \frac{\mathrm{P}}{\mathrm{~B}_{\mathrm{T}}}
\end{aligned}
$$

The above equation is the BrennanStacey equation [6, 16] derived using the free volume formula for the Gruneisen parameter and taking the second Gruneisen constant $\boldsymbol{q}=1$.

$$
\begin{aligned}
& \mathrm{P}=\frac{\mathrm{B}_{0}\left(\frac{\mathrm{~V}}{\mathrm{~V}_{0}} \frac{-\frac{1}{T}}{\mathrm{t}}\right.}{\mathrm{t}}\left[1-\frac{1}{\mathrm{t}}+\frac{2}{\mathrm{t}^{2}}\right)\left(\exp (\mathrm{ty}-1)+\mathrm{y}\left(1+\mathrm{y}-\frac{2}{\mathrm{t}}\right) \exp (\mathrm{ty})\right] \\
& B_{\mathrm{T}}=B_{0}\left(\frac{\mathrm{~V}}{\mathrm{~V}_{0}}\right)^{-\frac{1}{3}}\left(1+\mathrm{y}+\mathrm{y}^{2}\right) \exp (\mathrm{ty})+\frac{4}{3} \mathrm{p} \\
& \mathrm{~B}_{\mathrm{T}}=\frac{4}{3}+\left(1-\frac{4}{3} \frac{\mathrm{P}}{B_{\mathrm{r}}}\right)\left[\frac{1}{3}+\frac{\mathrm{V}}{\mathrm{~V}_{0}}\left\{\mathrm{t}+\frac{(1+2 \mathrm{y})}{\left(1+\mathrm{y}+\mathrm{y}^{2}\right)}\right\}\right] \\
& \text { Where t }=B_{0}{ }^{-}-\left(\frac{8}{3}\right)
\end{aligned}
$$

The above equation is the Shanker equation derived using a combined form of inverse power dependence and an exponential dependence for the short-range force constant on volume [17].

$$
\mathbf{P}=3 \frac{(1-X) B_{0}}{X^{2}} \exp \{\boldsymbol{\eta}(1-X)\}
$$

The above equation is the Vinet equation of state [18, 19] based on an expression for the cohesive energy of a condensed system that is assumed to vary only as a function of a normalized inter-particle separation r. The interatomic interaction in solids related mainly to compression was expressed
by a form $A(1+a r) \exp (-b r)$ with A, a and b as material constants. This form leads to the derivation of the Vinet equation of state.

$$
\begin{aligned}
& \mathrm{P}=\frac{3}{2} B_{0}\left(\mathrm{x}^{-7}-\mathrm{x}^{-5}\right)\left[1+\frac{3}{4} A_{1}\left(\mathrm{x}^{-2}-1\right)\right] \\
& B_{\mathrm{T}}=\frac{1}{2} B_{0}\left(7 \mathrm{x}^{-7}-5 \mathrm{x}^{-5}\right)+\frac{3}{8} B_{0} A_{1}\left(9 \mathrm{x}^{-9}-14 \mathrm{x}^{-7}+5 \mathrm{x}^{-5}\right) \\
& \mathrm{B}_{\mathrm{T}}=\frac{B_{0}}{8 \mathrm{~B}_{\mathrm{T}}}\left[\left(B_{0}-4\right)\left(81 \mathrm{x}^{-9}-98 \mathrm{x}^{-7}+25 \mathrm{x}^{-5}\right)+\frac{4}{3}\left(49 \mathrm{x}^{-7}-25 \mathrm{x}^{-5}\right)\right]
\end{aligned}
$$

The above equation is the Birch Murnaghan third-order EOS widely used in geophysics and high-pressure physics [4-6]. This equation is based on the finite strain theory [20]. Stacey et al. $[6,21]$ have shown that Birch Murnaghan third-order EOS may also be derived from a potential function expressed as the sum of three inverse power terms.

Result and Discussion:

For studying the pressure-volume relationships at high temperatures we need the input parameters B_{T} and B_{\circ}, corresponding to these temperatures. We use the ab-initio values at $P^{\prime \prime} 0$ obtained by Isaak et al. [1] for MgO at 500, 1000 and 1500 K as reported by Anderson [4]. These are given in Table 1 and used as input for all the equations of state under study without making any adjustment or fitting.
Table 1 Values of input data for MgO

Temperature (K)	(GPa)	
500	175	4.21
1000	160	4.36
1500	144	4.53

The results for pressure P, isothermal bulk modulus \mathbf{B}_{T} and pressure derivative $\mathbf{B}_{\boldsymbol{T}}$ obtained from different equations are compared. The comparison reveals that the Vinet EOS and the Shanker EOS yield very similar results.

The values of pressure P (GPa) for MgO at different compressions and temperatures have been calculated using Usual Tait Equation of State (A), Born Mie Equation of State (B), Shankar Equation of State (C), Vinet Equation of State (D) and Birch-Murnaghan Equation of State (E) in the tables 2-4, given below.

Table 2 Values of Pressure P (GPa) for MgO at different compressions at T=500 K

V / N_{0}	$A(P)$	$B(P)$	$C(P)$	$D(P)$	$E(P)$
1	0	0	0	0	0
0.9	23	23.1	23	23	23
0.8	61.6	62.8	61.8	61.7	62.6
0.7	127	134	128	128	133
0.6	236	267	245	246	265

Table 3 Values of Pressure \mathbf{P} (GPa) for MgO at different compressions at $\mathrm{T}=1000 \mathrm{~K}$

$V N o$	$A(P)$	$B(P)$	$C(P)$	$D(P)$	$E(P)$
1	0	0	0	0	0
0.9	21.2	21.2	21.2	21.1	21.2
0.8	57.4	58.4	57.4	57.3	58.3
0.7	119	126	120	120	125
0.6	225	257	232	233	253

Table 4 Values of Pressure P (GPa) for MgO at different compressions at $\mathrm{T}=1500 \mathrm{~K}$

$V N o$	$A(P)$	$B(P)$	$C(P)$	$D(P)$	$E(P)$
1	0	0	0	0	0
0.9	19.2	19.3	19.2	19.2	19.3
0.8	52.7	53.7	52.7	52.5	53.5
0.7	111	117	112	111	116
0.6	212	243	218	218	238

The values of isothermal bulk modulus $\mathrm{B}_{\mathrm{T}}(\mathrm{GPa})$ for MgO at different compressions and temperatures have been calculated using Usual Tait Equation of State(A), Born Mie Equation of State (B), Shankar Equation of State (C), Vinet Equation of State (D) and Birch-Murnaghan Equation of State (E) in the tables 5-7, given below.

Table 5 Values of isothermal bulk modulus $\mathrm{B}_{\mathrm{T}}(\mathrm{GPa})$ for $\mathbf{M g O}$ at different compressions at $\mathrm{T}=500 \mathrm{~K}$

VNo	$A\left(B_{T}\right)$	$B\left(B_{\tau}\right)$	$C\left(B_{T}\right)$	$D\left(B_{\tau}\right)$	$E\left(B_{\tau}\right)$
1	175	175	175	175	175
0.9	265	268	266	265	267
0.8	397	416	403	399	414
0.7	585	667	619	602	658
0.6	844	1119	968	937	1092

Table 6 Values of isothermal bulk modulus $B_{T}(G P a)$ for $\mathbf{M g O}$ at different compressions at $\mathrm{T}=1000 \mathrm{~K}$

V $N o$	$A\left(B_{\tau}\right)$	$B\left(B_{\tau}\right)$	$C\left(B_{\tau}\right)$	$D\left(B_{\tau}\right)$	$E\left(B_{\tau}\right)$
1	160	160	160	160	160
0.9	246	248	246	246	248
0.8	374	392	379	375	390
0.7	559	639	588	576	630
0.6	819	1093	932	902	1064

Table 7 Values of isothermal bulk modulus $B_{T}(G P a)$ for MgO at different compressions at $\mathrm{T}=1500 \mathrm{~K}$

V / N_{0}	$A\left(B_{T}\right)$	$B\left(B_{T}\right)$	$C\left(B_{\tau}\right)$	$D\left(B_{T}\right)$	$E\left(B_{T}\right)$
1	144	144	144	144	144
0.9	225	227	225	225	227
0.8	348	366	352	348	362
0.7	530	607	553	542	595
0.6	789	1067	890	861	1025

The values of pressure derivative of isothermal bulk modulus (GPa) for MgO at different compressions and temperatures have been calculated using Usual Tait Equation of State(A), Born Mie Equation of State (B), Shankar Equation of State (C), Vinet Equation of State (D) and Birch-Murnaghan Equation of State (E) in the tables 8-10 given below.

Table 8 Values of pressure derivative of isothermal bulk modulus B_{T} (GPa) for MgO at different compressions at $\mathrm{T}=500 \mathrm{~K}$

$V N o$	$A\left(B_{\tau}\right)$	$B\left(B_{\tau}{ }^{\prime}\right)$	$C\left(B_{\tau}\right)$	$D\left(B_{\tau}{ }^{\prime}\right)$	$E\left(B_{\tau}{ }^{\prime}\right)$
1	4.21	4.21	4.21	4.21	4.21
0.9	3.69	3.88	3.74	3.69	3.86
0.8	3.17	3.63	3.38	3.3	3.58
0.7	2.65	3.334	3.08	2.97	3.38
0.6	2.13	3.29	2.83	2.7	3.21

Table 9 Values of pressure derivative of isothermal bulk modulus $\mathrm{B}_{\mathrm{T}}{ }^{\text {(}}$ (GPa) for MgO at different compressions at $\mathrm{T}=1000 \mathrm{~K}$

$\mathrm{V} / \mathrm{No}_{0}$	$\mathrm{~A}\left(\mathrm{~B}_{\tau}\right)$	$\mathrm{B}\left(\mathrm{B}_{\mathrm{r}}\right)$	$\mathrm{C}\left(\mathrm{B}_{\tau}\right)$	$\mathrm{D}\left(\mathrm{B}_{\tau}\right)$	$\mathrm{E}\left(\mathrm{B}_{\tau}\right)$
1	4.36	4.36	4.36	4.36	4.36
0.9	3.82	4.02	3.86	3.81	3.98
0.8	3.29	3.76	3.48	3.337	3.7
0.7	2.75	3.56	3.16	3.06	3.49
0.6	2.22	3.41	2.9	2.77	3.33

Table 10 Values of pressure derivative of isothermal bulk modulus B_{T} (GPa) for MgO at different compressions at $\mathrm{T}=1500 \mathrm{~K}$

V / N_{0}	$A\left(B_{\tau}\right)$	$B\left(B_{\tau}\right)$	$C\left(B_{\tau}\right)$	$D\left(B_{\tau}\right)$	$E\left(B_{\tau}\right)$
1	4.53	4.53	4.53	4.53	4.53
0.9	4.17	4.36	4.17	4.11	4.3
0.8	3.59	4.08	3.74	3.55	3.99
0.7	3.02	3.88	3.39	3.28	3.75
0.6	2.44	3.73	3.09	2.96	3.56

The values of pressure $\mathrm{P}(\mathrm{GPa})$ for MgO at different compressions and temperatures have been plotted using Usual Tait Equation of State (Series1), Born Mie Equation of State (Series2), Shankar Equation of State (Series3), Vinet Equation of State (Series4) and Birch-Murnaghan Equation of State (Series5) in the graphs 2-4, given below.

The values of Isothermal bulk modulus $\mathbf{B}_{\mathbf{T}}(\mathrm{GPa})$ for MgO at different compressions and temperatures have been plotted using Usual Tait Equation of State (Series1), Born Mie Equation of State (Series2), Shankar Equation of State (Series3), Vinet Equation of State (Series4) and Birch-Murnaghan Equation of State (Series5) in the graphs 5-7, given below.

Figure 5 Isothermal bulk modulus BT (GPa) versus V/ V0 for MgO at $\mathrm{T}=500 \mathrm{~K}$

Figure 6 Isothermal bulk modulus BT (GPa) versus V/ Vo for MgO at $\mathrm{T}=1000 \mathrm{~K}$

Figure 7 Isothermal bulk modulus BT (GPa) versus V/ Vo for MgO at $\mathrm{T}=1500 \mathrm{~K}$
The values of pressure derivative of isothermal bulk modulus $\mathbf{B}_{\mathbf{T}}{ }^{\text {(GPa) for }} \mathrm{MgO}$ at different compressions and temperatures have been plotted using Usual Tait Equation of State (Series1), Born Mie Equation of State (Series2), Shankar Equation of State (Series3), Vinet Equation of State (Series4) and Birch-Murnaghan Equation of State (Series5) in the graphs 8-10, given below.

Figure 10 Pressure derivative of isothermal bulk modulus BT^{\prime} (GPa) versus V / VO for MgO at $\mathrm{T}=1500 \mathrm{~K}$

Acknowledgement

The financial support from Madhya Pradesh Council of Science \& Technology Bhopal (India) under the research project is gratefully acknowledged. The authors are very much thankful to the Department of Physics.

References

[1] D.G. Isaak, R.E. Cohen, M.J. Mehl, J. Geophys. Res. 95 (1990) 7055.
[2] O.L. Anderson, D.G. Isaak, J. Phys. Chem. Solids 54 (1993) 221.
[3] O.L. Anderson, K. Masuda, D.G. Isaak, Phys. Earth Planet. Inter. 91 (1995) 3.
[4] O.L. Anderson, Equations of State of Solids for Geophysics and Ceramic Science, Oxford University Press, New York, 1995.
[5] J. Hama, K. Suito, J. Phys.: Condens. Matter 8 (1996) 67.
[6] F.D. Stacey, B.J. Brennan, R.D. Irvine, Geophys. Surveys 4 (1981) 189.
[7] J. Freund, R. Ingalls, J. Phys. Chem. Solids 50 (1989) 263.
[8] S. Hart, P.H. Greenwood, Solid State Commun. 46 (1983) 161.
[9] J.R. MacDonald, Rev. Mod. Phys. 38 (1966) 669; 41 (1969) 316.
[10] A.T.J. Hayward, Brit. J. Appl. Phys. 18 (1967) 965.
[11] L.M. Thomas, J. Shanker, Phys. Stat. Sol. B 189 (1995) 363.
[12] M. Kumar, Physica B 212 (1995) 391; 217 (1996) 143.
[13] A. Chopelas, R. Boehler, Geophys. Res. Lett. 19 (1992) 1983
[14] J. Shanker, B. Singh, S.S. Kushwah, Physica B 229 (1997) 419.
[15] O.L. Anderson, J. Geophys. Res. 75 (1970) 2731.
[16] B.J. Brennan, F.D. Stacey, J. Geophys. Res. 84 (1979) 5535
[17] J. Shanker, S.S. Kushwah, P. Kumar, Physica B 239 (1997) 337.
[18] P. Vinet, J. Ferrante, J.R. Smith, J.H. Rose, Phys. Rev. B 35 (1987) 1945.
[19] P. Vinet, J.H. Rose, J. Ferrante, J.R. Smith, J. Phys.: Condens. Matter 1 (1989) 1941.
[20] F. Birch, J. Geophys. Res. 91 (1986) 4949.
[21] F. D. Stacey, Phys. Earth Planet. Inter. 89 (1995) 219.
[22] O. L. Anderson, D.G. Isaak and H.Oda.Rev. Geophys. 30, 57(1992),

