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In this paper, we have proposed a change point model related to the Two Parameter Rayleigh Distribution, where K is a
scale parameter and p is a location parameter. In the next section, we have obtained the Bayes Estimates and posterior
densities of B_1,K_2 and ‘m’. Then we have derived the Bayes Estimates under symmetric loss function. After that, we have
generated a numerical example and then we have studied the sensitivity of Bayes Estimates with respect to the change in
the prior of the parameters for the proposed model. In the final section, we have given the conclusions on the basis of the
numerical study.
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1. INTRODUCTION

It was Lord Rayleigh who introduced the Rayleigh Distribution in the year 1880. It was
studied and considered for the first time when there was some problem related to the acoustics
field. The hazard function is an increasing function of time in case of Rayleigh Distribution which
is a very significant characteristic to be considered as far as our study is concerned. According to
this characteristic, the aging process or the deterioration process of the equipments or items start
occurring in a very intense manner. It follows the Rayleigh Law when the failure times are
distributed and above mentioned process takes place. We must not forget to mention the invaluable
contributions of several researchers who studied the concept of Rayleigh Distribution and gave the
conclusions on the basis of their studies. Among those research scholars, Johnson, Kotz and
Balakrishnan studied the Rayleigh Law and made a study related to the excellent exposure of the
Rayleigh Distribution in the year 1994. Their research work was studied and further carried out by
the team of three research scholars named Abd-Elfattah, Hassan and Ziedean in the year 2006. The
research was taken further by the joint efforts of Dey and Das in the year 2007 and Dey gave some
latest results and conclusions in the year 2009 on the basis of the research work carried out earlier
by the above mentioned scholars in the field of Statistics, which includes estimations, predictions
and inferential issues for One Parameter Rayleigh Distribution. The Compound Rayleigh Model
with a unimodal hazard function was obtained by Mostert, Roux and Bekker in the year 1991 and
the Generalized Compound Rayleigh Model was studied by them in the year 2001 from the
Bayesian perspective. The main application of the Compound Rayleigh Distribution is for the
modelling of the survival times of patients which show the characteristics of a random hazard rate.
Here, we shall consider the case of Generalization of the Two Parameter Rayleigh Life Time

Distribution. The survival distribution and hazard function of this distribution are given as under:
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Xi A, 1) = Xp—p)e T >u,A>0and 1= 1,2, 3, m
(o A u)= 21 A (i ~)* A>0andi=1,2,3

S(t) = e A, t>u

h(t) = 2 (t - u), £>0 (1)

We shall note that the phenomenon of change point is observed in several situations when
we study a life time model. At some point of time, we observe instability in the sequence of life
time under observation and study. Our study is mainly focused to find that change point, where we
need to find out at what time and at which point, the changes begin to occur. This entire
phenomenon is called the change point inference problem. Here, we have clearly proposed the
Bayesian Estimation Method as a strong and valid alternative to the method of Classical
Estimation. Thus, our purpose is to study the Two Parameter Rayleigh Model with a change point

from the Bayesian point of view.

Here, we have proposed a change point model related to the Two Parameter Rayleigh
Distribution, where A is a scale parameter and p is a location parameter. In the next section, we
have obtained the Bayes Estimates and posterior densities of 44, 4, and ‘m’. Then we have derived
the Bayes Estimates under symmetric loss function. After that, we have generated a numerical
example and then we have studied the sensitivity of Bayes Estimates with respect to the change in
the prior of the parameters for the proposed model. Finally, we have given conclusions on the basis

of the numerical study.

2, PROPOSED CHANGE POINT MODEL
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Let Xy, X5, X3,..., X, (n>3) be a sequence of random lifetimes. Let first ‘m’ observations
be coming from Two Parameter Rayleigh Distribution with the parameters (4, u). So the
probability density function is given by:

f (i) ) =224 (= p) e G0 (2)

where x; > u, 4y > 0 and i= 1, 2, 3,...,m with the survival distribution function S, (t) and hazard

function h, (t)given by,
S =e T >y 3)
hi(6) =24, (t—p) 5 t>0 (4)

Later n-m observations are coming from the Two Parameter Rayleigh Distribution (A, u)
probability density function is given by,

FO, A ) =225 (x; — ) e &% x> 2, > 0and i=m+l,..on (5)

with the survival distribution function S, (t) and hazard function h, (t)given by,

S,(H)=e R 1> (6)
ho() =22, (t— ) t>0 (7
For the given sample information T= (T, ..., T, Tips1 - - - » Tn), the likelihood function

will be as under:
L(/‘{IIAZI,UJ mlI) = Zn U Alme_llTl /12 n_me_;{Z T, (8)
where,

Ty =Ty(m) = Xy (x —w)?
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T,=T,(m) = Z?=m+1(xi - ﬂ)z )
U= (x = w) )
3. POSTERIOR DENSITIES

We suppose the marginal prior distribution of ‘m’ to be discrete uniform over the set

(1,2,3,..,n-1}.
gm)=— (10)

We also suppose a discrete prior distribution on the parameter p considering the reference
of the research work of Soland carried out in the year 1969. Further, we make an assumption that

let the parameter u be restricted to finite number of values say, u,, 4, ..., ,, in the interval (0,1).
Pr (u)=¢ I

Yis§i=1, 0<§<1, FL2,.,w (11)

Let us now suppose the conditional gamma prior on A; and A, given u=¢; where,

j=1,2, .. .,w which leads to tractable mathematics, viz.

g &) =B et 250, a,h > 0

Fal

gl &) =20, ek 1,50, 25,b, > 0 (12)

- l"az

Let the prior information be given respectively in terms of prior means y; and p, and coefficient

of variations ®;and ®@,. Then, we have:
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nul_(;_ia
1
O, = —
1 \/a_1’
Uy Z—zand
0, = — (13)
S

Thus, if we have prior knowledge of py, p,, @, and @,, then gamma parameter can be

. 1
obtained by a; = o7
1

T om0,

1 1
a, = (D_12 and bz = W (14)
Hence, the joint prior density will be:

90Ty ) = T 6 o e bk g (15)

The joint posterior density of parameters A, A,, u and ‘m’is obtained using the likelihood function

and the joint prior density of the parameters as under:

LAy, 42, 1 m|T1j; Tyj, fj)g(lp Ay, pt,m)
h(T)

9(11'/12:#'”1“11]': Tyj, 5j) =
:klgjcnUj,11‘I1+m‘1e—/11(T1+b1),1232+“‘m‘1e—/’lz(Tz+bz)/h(T) (16)

where, klz___a Hl 1(xl :uj)a le = eril(xi _:uj)z
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and Ty; = Yi=mer(Xi — ﬂj)z (17)
and h(T) is the marginal posterior density of T.

h(T) = ER2 T fy o kg Uy T e Tttt el )

_yn-1 yw o agtm-1 -2 (T;+b o agtn-m-1_ 1, (T, +b
=i Zjea ka&; Uy [ AT e 1(T1j*b1) g A, J, 22" e~ h2(T2jtb2) 4,

_vn-1 vw I'm+a, I'n-m+a,
- Lm=1 j:l klf] U] (T1j+b1)m+a1 (T2j+b2)n‘m+32 (18)

We shall apply the discrete version of Bayes theorem to obtain the marginal posterior probability

distribution of the y = K as under:

=Pk (ﬂ =ﬂj|Tj) «
Encikad Uy fy T e AR, [, 1T e dagh™H (D)

which further reduces to

- I'm+aq I'n-m+a,
P Yl k& U;
]= Zm—l 16] ] (T1j+b1)m+a1 (T2j+b2)n—m+a2

h~X(T) for j=1, 2,...,w (19)
The joint posterior density will be:

g (/11’12 |ﬂ]'I)= 77;11;11 klf] U] /«{1(11+m—1e—l1(T1j+b1)/12a2+n—m—1e—/12(T2j+bz)h—1(I)
Marginal posterior density g (/11| Ky I) and g(4,| y}.,I) will be:

9Qulup 1) = Th [ 90 Aaluy, ) dAy

I'n-m+a,

— n-1 T, a1+m_1 —/11(T +b1) e
- Zm:l klE] Ujﬂ'l € Y (T2j+b2)n—m+a2

(D) (20)
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and g(Ralup 1) = Thizh f; 9104, Aol T) d2g

I'm+a,

— n-1 T, aZ+n_m_1 —/12(T +b2)
Zm=1k1S(] U]/lz e 2 (T1j+b1)m+a1

Oy (21)

Combining (19) and (20), marginal posterior density of 4; say g(4,|T) will be as under:

Pj(T1j+b1)m+a1 Al a1+m—1e—/11 (T1j+b1)

gD = Eny ]yil (22)

Fm+a1

Combining (19) and (21), marginal posterior density of A;sayg(4,|T) will be:

P]'(sz+b2)n_m+az Azaz+n—m—1e—AZ(T2}-+b2)

g T) = Xk ]yi1 'n-m+a, (23)
The marginal posterior density of change point ‘m” will be:
g(m |ﬂj,1) = B(m)/h(T) where j=1,2,...,w (24)

where B(m) =k;¢;U; fgo/llal’fm‘l e~M(Taj*b1) g f(;” 2,22 = 2a(Tajt) g7

I'm+a;'n-m+a,
—k.&.U-
15] J (T4j4+b1)MFaL(T, j+by)N-M+22

(25)

We get the marginal posterior density of the change point 'm’ on combining (19) and (24) as

g(m|T) = T, BB (m)/h(T) (26)

4. BAYES ESTIMATES UNDER SYMMETRIC LOSS FUNCTION
In this section, we have obtained the Bayes Estimates of the change point, survival times,

hazard rates and parameters 14, A, under the symmetric loss function. Earlier in section 3, we have
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discussed about the Bayes Estimates of the unknown change point ‘m’, using conditional gamma

prior g(44, 4, m). The Bayes estimator of ‘m” under Square Error Loss Function is
m’ = ¥ X% Pm B(m) /h(T) )
where B(m) and h(T) are same as obtained in (18) and (25) respectively.

The Bayes Estimates of A, under Square Error Loss Function (SEL) are:

1s =2m- 1 ] 1 Jf Q(A1|T1;»T2])/11d/11

—ynt (Ty+b)™™ e abm 2, (r +by)
] 1 Imia f 4 ¢ d,
n-1 (Tqj+b)™ "I m+a;+1

m=1 ] 1 ]Fm+a1(T1 +b1)m+a1+1

m+aq
Zm 1 ] 1 ](T +b1) (28)

The Bayes Estimates of 1, under Square Error Loss Function (SEL) are:

b = T BBy Jy 9 (Ra[Ty Toj) 22 44,

(sz-l-bz)n m+ap

atn-m ,—15(T2j+by)
Z ] 1 ] I'n-m+a, f /12 ¢ ! d/12

Z (T2]+b2)“ M2 I'm-m+a,+1
] 1 ] [n-m+a;  (Tj+by) Mtaztl

n-1 ow I'n-m+a, 29
m=1 ]=1 ] T2]+b2 ( )

The Squared Error Loss (SEL) functions for survival distribution functions are respectively given

by:
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Sts = ?n_=11 ]vi1P} f(:og(/12|T1j'T2j) dA,

(T1]+b1)m+a1 © o ag+m-1_ -1, (T, ;+by)

—_— 11 1

= Ym=12j=1 P} m+a, f M e T d Ay
(T1j+b1) ® o ag+m-1,_-1,[(T4+b1)
Sy 1[(T1jtb1

= ] 1B Trtd, fo M e dA,
(T1]+b1)m+a11"m+a1

= Ym=

J 1 ]Fm+a1(T1]+b1)m+a1

1 —(m+a1)
=SSR (15 60
Similarly, we get
S5 = 2m- 4 f 9(A;|Ty, Ty;) dA,
(T2j+b)" ™22 o0 aoin-m-1_—2,(T,+b
= It D B [y A e Tt dg,
Z (T21+b2)n‘m+"‘21"n m+a,
] 1 ]l"n m+a2(T2]+b2)n a2
. 1 —(n-m+a;)
— n-— w

The Bayes Estimates of h; (t) and h,(t) under Square Error Loss Functions (SEL) are given by:

* n-1

1s = fo =1 (/11|T11»T2]) dA,
(T1]+b1) M@ L gitm A (T4 4by)
_— 141 1

T Dty By e [ M e M) dy
(T1]+b1)m+a1Fm+a1+1

Zm 1

=1 er+a1(T1]+b1)m+a1+1
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_yn-1yw p (mtas)
M=LEG=1T (T j4by)

Similarly, we get

by = [ Tk T B g (ol Ty Top) ddy
=Xm= ] 1 ] (T2]r;b2121n+:+a2 fo Azn_mﬁze_lZ(TzﬁbZ) da,

(T2]+b2)n M+22'n-m+ay+1
=1h) Tn-m-+ay (Tyj+by)"~M+az+1

Zml

Z (n m+ay)
m= 1 ] 1 (T2j+b2)

5. NUMERICAL STUDY

(32)

We have generated 20 random observations from the Two Parameter Rayleigh Model

explained earlier. The first ten observations were taken with A; = 0.55 and the next ten

observations were taken with A, = 1.08 from the same distribution. A; and A, themselves were

random observations from gamma distributions with prior means as w=0.55, w=1.08 and

coefficient of variations ®; = 0.85,®, = 0.36 respectively. The resultant values obtained are

given in table 1 for b; = 1.56,b, = 2.46,a,=1.11 and a, = 3.24.

TABLE 1

Generated observations from Two Parameter Rayleigh Model
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0.2315

0.7731

0.6921

0.1985

0.3170

0.4545

0.2919

0.3927

54075

0.2014

0.6870

0.6507

8.2664

0.6894

TABLE 2

Hyper parameter values of the gamma prior and the posterior probabilities

TEEEE 4
AR
U; | 0.000198 | 0.000296 | 0000324 | 1.60639x 1078
b L8 | 13| 14 [ 15
a| L4 [ L6 | LI | LD
b 090 [ LT[ 12 [ 24
o| 200 [ 1 |2 [ 3
pi| 0757 [ 03247 [ 04707 [ 0.0261

The results of posterior mean of m, yy, 15,5 (t), $(t), hy (), hy(t) and posterior median of ‘m’

which we have calculated are shown in table 3, table 4 and table 5 respectively.
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TABLE 3

Bayes Estimates of the change point ‘m’, 4; and A, under

Square Error Loss Function

Prior Bayes Estimates of the change point | Bayes Estimates of the Posterior Means
Density of A; and 4,
Posterior Median | Posterior Mean | Posterior Mean of | Posterior Mean of
of ‘m’ of ‘m’ A A,
Informative 8.0 9.0 0.55 1.08
TABLE 4

Bayes Estimates of s; (t) and s;(t) under Square Error Loss Function

Posterior mean of s;(t) | Posterior mean of s,(t)

0.28 0.08

TABLE 5

Bayes Estimates of h;(t) and h,(t) under Square Error Loss Function

Prior Density | Bayes Estimates of Posterior Means of h;(t) and h,(t)

Posterior Means of h;(t) | Posterior Means of h,(t)

Informative 0.49 0.91
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6.  SENSITIVITY OF BAYES ESTIMATES

Here, we have studied the sensitivity of the Bayes Estimates obtained earlier in section
2 and section 3 with respect to the change in the prior of the parameter. We have computed m"
and my for the data given in table 1 considering the different values of (4, ;) and results are

shown in table 6.
TABLE 6

Bayes Estimates m* and mj, for different values of Prior Means

1] 15 m* |mg

055 |1.98 8 8

055 | L7 8 8

055 | 125 8 8

0.54 | 1.08 8 8

045 |1.08 8 8

051 | 1.08 8 8

051 1085 8 8

057 | 143 8 8

048 | 135 8 8
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TABLE 7

Frequency Distributions of the Bayes Estimates of the change point

Bayes Estimates % Frequency for
01-05 | 06-10 | 11-14
Posterior Mean 13 85 09
Posterior Median | 14 85 09
me” 27 63 18
mg’ 39 57 09

7. CONCLUSIONS

On the basis of the numerical studies, we come to the conclusion that the Bayes Estimates

of the posterior mean of ‘m’ and m"g are robust in nature with respect to the correct choice of the

prior specifications on A44(4,) and incorrect choice of the prior specifications on A, (4,)

respectively. It is quite clear that he results are case sensitive in prior specifications on A4, and 4,.

Moreover, simultaneous deviations from the true values are clearly seen from the results. Table 6

leads to the conclusion that m" and m’E are robust wit respect to the correct choice of the prior

density and are also robust with respect to the change in the shape parameter.
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