INTRODUCTION
A transportation problem is said to be [1], the type of linear programming problem. This is particularly important in the theory of decision making. Different methods have been presented for Transportation problem and various articles have been published on the subject.

In this paper, we determine optimal shipping patterns between origins or sources and destinations [5]. Many problems which have nothing to do with transportation have this structure. Suppose that \(m \) origins are to supply \(n \) destinations with a certain product. Let be the amount of the product available at origin \(i \), and be the amount of the product required at destination \(j \). Further, we assume that the cost of shipping a unit amount of the product from origin \(i \) to destination \(j \) is we then let represent the quantity of the product transported from origin \(i \) to destination \(j \).

If shipping cost, are assumed to be proportional to the amount shipped from each origin to each destination so as to minimize total shipping cost turns out to be a linear programming problem.

Transportation models have wide applications in logistics and supply chain for reducing the cost. When the cost coefficients and the supply and demand quantities are known exactly, many algorithms have been developed for solving the transportation problem.

A considerable number of methods have been so far presented for finding an initial solution of a Transportation problem. It must be feasible i.e., it must satisfy all the supply and demand constraints. A solution is said to be feasible if \(x_{ij} \) of the transportation matrix are allocated some units/items.

The cells having an allocation are known as ‘Occupied cells’ while, other cells are termed as ‘Unoccupied cells’. The main concept of transportation is to establish the ‘least cost route’ problem is to find the optimum allocation of a number of resources to an equal number of demand points. An allocation plan is optimal if optimizes the total cost or effectiveness of transferring all the goods. This paper attempts to propose a method for finding optimal solution of transportation problem which is different from the preceding methods.

RELATED WORKS
This work is alternative for existing MODI (Modified Distribution Method) method [3] in which the number of iteration is minimized. The optimal solution is coincide with the MODI method. It is also applicable for balanced [4] transportation problems.

MATHEMATICAL FORMULATION OF UNBALANCED TRANSPORTATION PROBLEM
Mathematically a transportation problem can be stated as follows:

\[
\text{Minimize } Z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij}x_{ij}
\]

For an unbalanced transportation problem

\[
\sum_{j=1}^{n} a_j = \sum_{i=1}^{m} b_i
\]

A NEW APPROACH FOR SOLVING UNBALANCED TRANSPORTATION PROBLEM
This section presents REDI method to solve the unbalanced transportation problem which is different from the preceding method.

Step (i) Start with the addition of dummy row or dummy column based on the demand and supply of the unbalanced transportation problem. Insert the dummy column if the supply is not sufficient to meet out the demand similarly adds row if the demand is less and vice versa.

Step (ii) Start with the minimum value in the supply column and demand row. If tie occurs, then select the demand or supply value with least cost [7].

Step (iii) Compare the figure of available supply (capacity) in the row and demand in the column and allocate the units equal to capacity or demand whichever is less.

Step (iv) If the demand in the column is satisfied, move to the next minimum value in the Demand row and supply column.

KEYWORDS
Unbalanced transportation problem, Linear programming Problem, REDI Method, MODI method.
Step (v) The cells either in the dummy row or dummy column should be filled only after the steps i to iv.

Step (vi) Repeat Steps (ii) and (iv) until capacity condition of all the plants demand conditions of all warehouse have been satisfied.

MATHEMATICAL CONCEPT OF THE SUBJECT

One of the operations associated with matrices is calculation of scalar value known as the determinant of a square matrix [6]. Here we do not want calculate the determinant of a matrix, only we want to use the properties of the determinant operator, when we use customary and common notation, for the determinant of the matrix. [table1]

<table>
<thead>
<tr>
<th>plants(i)</th>
<th>Warehouse(j)</th>
<th>Supply(i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>x_{11}</td>
<td>c_{11}</td>
</tr>
<tr>
<td></td>
<td>x_{12}</td>
<td>c_{12}</td>
</tr>
<tr>
<td></td>
<td>....</td>
<td>....</td>
</tr>
<tr>
<td></td>
<td>x_{1n}</td>
<td>c_{1n}</td>
</tr>
<tr>
<td></td>
<td>s_1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>x_{21}</td>
<td>c_{21}</td>
</tr>
<tr>
<td></td>
<td>x_{22}</td>
<td>c_{22}</td>
</tr>
<tr>
<td></td>
<td>....</td>
<td>....</td>
</tr>
<tr>
<td></td>
<td>x_{2n}</td>
<td>c_{2n}</td>
</tr>
<tr>
<td></td>
<td>s_2</td>
<td></td>
</tr>
<tr>
<td>....</td>
<td>....</td>
<td>....</td>
</tr>
<tr>
<td></td>
<td>....</td>
<td>....</td>
</tr>
<tr>
<td>m</td>
<td>x_{m1}</td>
<td>c_{m1}</td>
</tr>
<tr>
<td></td>
<td>x_{m2}</td>
<td>c_{m2}</td>
</tr>
<tr>
<td></td>
<td>....</td>
<td>....</td>
</tr>
<tr>
<td></td>
<td>x_{mn}</td>
<td>c_{mn}</td>
</tr>
<tr>
<td></td>
<td>s_m</td>
<td></td>
</tr>
<tr>
<td>Demand</td>
<td>d_1</td>
<td>d_2</td>
</tr>
<tr>
<td></td>
<td>....</td>
<td>....</td>
</tr>
<tr>
<td></td>
<td>d_n</td>
<td></td>
</tr>
</tbody>
</table>

Table 1.a Transportation Matrix

Numerical example

The following examples may be helpful to clarify the proposed method:

Consider the following transportation problem. Find most economical shipment to minimize the transportation cost.

Table 1.b Transportation Matrix of the problem

<table>
<thead>
<tr>
<th>From/To Plants</th>
<th>Warehouse</th>
<th>Q</th>
<th>R</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>P</td>
<td>35</td>
<td>25</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>875</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>P</td>
<td>10</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>575</td>
<td></td>
</tr>
<tr>
<td>Demand</td>
<td></td>
<td>150</td>
<td>350</td>
<td>450</td>
</tr>
</tbody>
</table>

Table 2. Matrix of the given unbalanced transportation problem.

In the table 3 the minimum value in the demand row and capacity column are 350 (ignoring the dummy column which is having the value 300). The cell which is having least transportation cost in the Pth column is BP. Hence allocate the entire 350 units to this cell. It is (cell AR) ignored for the next iteration. The revised values of the table 3 are indicated in the table-4. The occupied cell value is (350×10 = 3500).

<table>
<thead>
<tr>
<th>From/To Plants</th>
<th>Warehouse</th>
<th>Q</th>
<th>R</th>
<th>W</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>P</td>
<td>25</td>
<td>15</td>
<td>0</td>
<td>875</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>225</td>
<td>30</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Demand</td>
<td></td>
<td>125</td>
<td>450</td>
<td>300</td>
<td>750</td>
</tr>
</tbody>
</table>

Table 3. Allocation of shipment to the cell BP

In the table 4 the minimum value in the demand row and capacity column are 450 (ignoring the dummy column which is having the value 300). The cell which is having least transportation cost in the Qth column is QB. Hence allocate 225 units to this cell. It is (cell QB) ignored for the next iteration. The revised values of the table 4 are indicated in the table-5. The occupied cell value is (225×20 = 4500).

<table>
<thead>
<tr>
<th>From/To Plants</th>
<th>Warehouse</th>
<th>Q</th>
<th>R</th>
<th>W</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>125</td>
<td>20</td>
<td>0</td>
<td>750</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>225</td>
<td>30</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Demand</td>
<td></td>
<td>125</td>
<td>450</td>
<td>300</td>
<td>750</td>
</tr>
</tbody>
</table>

Table 4. Allocation of shipment to the cell BQ

In the table 5 the minimum value in the demand row and capacity column are 450 (ignoring the dummy column which is having the value 300). The cell which is having least transportation cost in the Qth column is QA. Hence allocate 125 units to this cell. It is (cell QA) ignored for the next iteration. The revised values of the table 5 are indicated in the table-6. The occupied cell value is (125×25 = 3125).

<table>
<thead>
<tr>
<th>From/To Plants</th>
<th>Warehouse</th>
<th>R</th>
<th>W</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>450</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>30</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Demand</td>
<td></td>
<td>0</td>
<td>300</td>
<td>300</td>
</tr>
</tbody>
</table>

Table 5. Allocation of shipment to the cell AQ

In the table 6 the minimum value in the demand row and capacity column are 450 (ignoring the dummy column which is having the value 300). The cell which is having least transportation cost in the Qth column is AR. Hence allocate 125 units to this cell. The occupied cell value is (450×15 = 6750).

<table>
<thead>
<tr>
<th>From/To Plants</th>
<th>Warehouse</th>
<th>R</th>
<th>W</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>450</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>30</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Demand</td>
<td></td>
<td>0</td>
<td>300</td>
<td>300</td>
</tr>
</tbody>
</table>

Table 6. Allocation of shipment to the cell AR
The occupied cell value is $(300 \times 0 = 0)$.

REDI Method

The numbers of occupied cell are hence the basic feasible solution is ready for optimality. So there is no degeneracy in the transportation problem.

Optimal Solution

$$\begin{align*}
(125 \times 25) + (450 \times 15) + (350 \times 10) + (225 \times 20) + (300 \times 0) = \text{Rs.}17,875
\end{align*}$$

Existing One MODI Method

II-Test for Optimality by MODI Method

<table>
<thead>
<tr>
<th>Stone squares</th>
<th>Equation</th>
<th>Value of r$_i$ and k$_j$ if r$_i$ = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>AQ</td>
<td>r$_i$ + k$_j$ = 25</td>
<td>r$_i$ = 0, k$_j$ = 25</td>
</tr>
<tr>
<td>AR</td>
<td>r$_i$ + k$_j$ = 15</td>
<td>k$_j$ = 15</td>
</tr>
</tbody>
</table>

Since net cost change for all water square is positive, the solution by REDI method is optimal.

Conclusion

In this paper, a new and simple method was introduced for solving unbalanced transportation problem. This method can be applied for an unbalanced transportation problems, which is having objective function of minimize. The number of iteration is minimized when compared to other methods like MODI and stepping stone. This new method is based on the allocation of demand and supply items in the transportation matrix, and finds an optimal solution intern of the ones.

REFERENCES