On Ternary Quadratic Equation $7 x^{2}-3 y^{2}=z^{2}$

## R.Nandhini

## Lecturer in Mathematics, Bharathidasan university Model College, Thiruthuraipoondi-614713.

 solutions. A few interesting relations between the solutions and special polygonal numbers are exhibited.\section*{| KEYWORDS | Ternary, Quadratic, Integral solutions |
| :--- | :--- |}

## Introduction:

The theory of Diophantine equations offers a rich variety of fascinating problems (1-5). For an extensive review of sizable literature and various problems, one may refer [6-20]. This communication concerns with yet another interesting ternary quadratic equation $7 x^{2}-3 y^{2}=z^{2}$ for determining its infinitely many non-zero integral solutions. Also a few interesting relations among the solutions have been presented.

## Notations Used:

$t_{m, n}$-Polygonal number of rank $n$ with size $m$.
$P_{n}{ }^{k}$-Pentagonal number of rank $n$ with size $k$.
Method of Analysis:
The Ternary Quadratic Diophantine Equation to be solved for its non-zero distinct integral solution is
$7 x^{2}-3 y^{2}=z^{2}$

## PATTERN I

On substitution of linear transformations ( $u \neq v \neq 0$ )
$x=u+3 v, y=u+7 v, z=2 z$
in (1) leads to $u^{2}=z^{2}+21 v^{2}$
The corresponding solutions of (3) is the form
$z=a^{2}-21 b^{2}$
$v=2 a b$
$u=a^{2}+21 b^{2}$
In view of (4), the solutions of (1) can be written as
$x=a^{2}+21 b^{2}+6 a b$
$y=a^{2}+21 b^{2}+14 a b$
$z=2 a^{2}-42 b^{2}$
A few interesting properties observed are as follows:

1. $z(a, 1)+2 x(a, 1)-8 t_{3, a} \equiv 0(\bmod 8)$
2. $z(1, b)-2 y(1, b)+t_{90, b}+\mathrm{t}_{82,6} \equiv 0(\bmod 110)$
3. $x(a, 2)+z(a, 2)-6 t_{3, \mathrm{a}} \equiv-84(\bmod 9)$
4. $x(1, b)-t_{64, b}+t_{22, b} \equiv 1(\bmod 27)$
5. $x(1, b)+y(1, b)-t_{102, b}+t_{18, b} \equiv 2(\bmod 62)$
6. $x(3 a, 2)+3 y(3 a, 2)-72 t_{3, a} \equiv 84(\bmod 252)$
7. $z(A, A+1)+y(A, A+1)-t_{10, A}+t_{6, A}-28 t_{3, A} \equiv 0(\bmod 2)$
8. $z(A,(A+1)(A+2))+y(A,(A+1)(A+2))-t_{12, A}+t_{8, A}-84 P_{A}{ }^{3}=0$ $(\bmod 2)$
9. $z(A, A(A+1))+y(A, A(A+1))-20 t_{3, A}+t_{18, A}-28 P_{A}{ }^{5}=0(\bmod 17)$
10. $z(a, 1)+2 x(a, 1)-t_{98, a}+t_{90, a} \equiv 0(\bmod 16)$

## PATTERN II

The solution of (3) is obtained from
$z=21 m^{2}-n^{2}$
$\mathrm{v}=2 \mathrm{mn}$
$u=21 m^{2}+n^{2}$
Substituting (5) in (2), the corresponding integral solutions of (1) are given by
$x=21 m^{2}+n^{2}+6 m n$
$y=21 m^{2}+n^{2}+14 m n$
$z=42 m^{2}-2 n^{2}$
A few interesting properties observed are as follows.

1. $z(m, 4)-y(m, 4)-t_{104, m}+t_{62, m} \equiv-48(\bmod 35)$
2. $2 x(m, 2)-y(m, 2)-t_{62, m}+t_{20, m} \equiv 4(\bmod 17)$
3. $x(m, 1)+z(m, 1)-t_{102, m}-t_{28, m} \equiv-1(\bmod 67)$
4. $y(m, 3)+2 x(m, 3)-t_{148, m}+t_{22, m} \equiv 27(\bmod 141)$
5. $y(m, 2)-t_{32, m}-t_{14, m} \equiv 4(\bmod 47)$
6. $x(1, n)+3 y(1, n)-t_{16, n}+t_{8, n} \equiv 32(\bmod 52)$
7. Each of the following expressions represents a Nasty number
a) $z(m, m)+2 x(m, m)$
b) $z(m, m)-x(m, m)$

## PATTERN III

Equation (3) can be written as
$z^{2}+21 v^{2}=u^{2 * 1}$
Assume that $u=a^{2}+21 b^{2}$
Write 21 as 21 = (i sqaureroot of (21)) (-i squareroot of 21 )(8)
Define $1=\frac{(2+i \text { square root of } 21)(2-i \text { square root of21) }}{25}$

Use (7) and (8) in (6) and employing the method of factorization.
$z+i$ square root of 21 v$)=1 / 5[(a+i$ isquare root of 21 b$) 2(2+1$ square root of 21)]

Equating the real and imaginary parts in (10), we obtain
$z=\left(a^{2}-21 b^{2}-21 a b\right)$
$u=\left(a^{2}-21 b^{2}+4 a b\right)$
Our interest is to obtain the integral solutions, so that the values of $z$ and $v$ are integers for suitable choices of the parameters ' $a$ ' and ' $b$ '

Put $a=5 A, b=5 B$ in (7), (11) and (12), we get
$z=10 A^{2}-210 B^{2}-210 A B$
$v=5 A^{2}-105 B^{2}+20 A B$
$u=25 A^{2}+525 B^{2}$
Substituting (13) in (2), the corresponding integral solutions of (1) are given by
$x=40 A^{2}+210 B^{2}+60 A B$
$y=60 A^{2}-210 B^{2}+140 A B$
$z=20 A^{2}-420 B^{2}-420 A B$
Thus equation (14) represents non-zero distinct integral solutions of (1) in two parameters.

A few interesting properties observed are as follows.

1) $x(2, B)-z(2, B)-t_{1402, B}+t_{142, B} \equiv 80(\bmod 1590)$
2) $y(A, B)+2 z(A, 3)-t_{152, A}-t_{52, A}=-9450(\bmod 2002)$
3) $y(A, 1)-x(A, 1)-40 t_{3, A} \equiv-420(\bmod 60)$
4) $x(A, 3)-z(A, 3)-t_{102, A}+t_{62, A} \equiv 1290(\bmod 1460)$
5) $y(1, B)+4 x(1, B)-t_{1002, B}+t_{262, B} \equiv 220(\bmod 1008)$
6) $y(2 A, 5)-z(2 A, 5)-320 t_{3, A} \equiv 5250(\bmod 5440)$
7) $x(B+1, B)-2 z(B+1, B)-t_{2202, B}+t_{102, B}-1800 t_{3, B} \equiv 0(\bmod 1050)$
8) $x(B(B+1), B)-2 z(B(B+1), B)-2700 t_{3, B}+t_{602, B}-1800 P_{3}^{5} \equiv 0$ (mod 1649)

## PATTERN IV

Define $1=\frac{(10+i \text { square root of } 21)(10 \text {-isquare root of } 21)}{121}$
The same procedure applied to find solution for PATTERN III is
applied and obtained solution correspondingly for PATTERN IV.

$$
\begin{align*}
& x=154 A^{2}+1848 B^{2}+660 A B \\
& y=198 A^{2}+924 B^{2}+1540 A B  \tag{16}\\
& z=220 A^{2}-4620 B^{2}-924 A B
\end{align*}
$$

Thus equation (16) represents non-zero distinct integral solutions of (1) in two parameters.

A few interesting properties observed are as follows.

1. $x(A, 1)+z(A, 1)-t_{762, A}+t_{14, A} \equiv-2772(\bmod 110)$
2. $z(A, 1)-y(A, 1)-t_{50, A}+t_{6, A}=-5544(\bmod 2442)$
3. $x(3 A, 4)+y(3 A, 4)-\mathrm{t}_{6402, \mathrm{~A}}+\mathrm{t}_{66, \mathrm{~A}} \equiv 14784(\bmod 29568)$
4. $y(5,2 B)-2 z(5,2 B)-t_{100002, B}+t_{18690, B}=-6050(\bmod 29536)$
5. $z\left(A, A(A+1)+5 y\left(A, A(A+1)-2600 t_{3, A}+t_{182, A}-13552 P_{A}^{5} \equiv 0\right.\right.$ (mod 1389)
6. $z(A,(A+1)(A+2))+5 y(A,(A+1)(A+2))-2430 t_{3, A}+t_{12, A^{-}}$ $40656 \mathrm{P}_{\mathrm{A}}{ }^{5}=0(\bmod 1219)$
7. $z(A, A+1)+5 y(A, A+1)-t_{2002, A}-t_{422, A}-13552 t_{3, A} \equiv 0(\bmod 1208)$
8. $2 y(A,(A+1)(A+2))-x(A,(A+1)(A+2))-500$ $t_{3, A}+t_{18, A}+14520 P_{A}^{3} \equiv 0(\bmod 257)$
9. $2 y(A, A(A+1))-x(A, A(A+1))-684 t_{3, A}+t_{202, A}+4840 P_{A}^{5} \equiv 0$ $(\bmod 351)$
$10.2 y(A, A+1)-x(A, A+1)-\mathrm{t}_{492, \mathrm{~A}}+\mathrm{t}_{8, \mathrm{~A}}+4840 \mathrm{t}_{3, \mathrm{~A}} \equiv 0(\bmod 242)$

## Conclusion:

To conclude, one may search for other patterns of solutions and their corresponding properties.

## Reference:

1. Dickson LE.History of Theory of numbers, Chelsea Publishing Company, New York, 1952, 2.
2. Mordell LJ.Diophantine Equations, Academic press, London, 1969.
3. Andre Weil, Number Theory: An approach through history: from hammurapi to legendre / Andre weil: Boston (Birkhauser Boston, 1983.
4. Nigel Smart P.The algorithmic Resolutions of Diophantine equations, Cambridge university press, 1999.
5. S mith DE. History of mathematics Dover publications, New York, 1953, I (II).
6. Gopalan MA.Note on the Diophantine equation $x^{2}+a x y+b y^{2}=z^{2}$ Acta Ciencia India 2000; XXVM(2):105-106.
7. Gopalan MA.Note on the Diophantine equation $x^{2}+x y+y^{2}=3 z^{2}$ Acta Ciencia India 2000; XXVM(3):265-266.
8. Gopalan MA, Ganapathy R, Srikanth R.on the Diophantine equation $z^{2}=A x^{2}+$ $\mathrm{By}^{2}$, Pure and Applied Mathematical Sciences 2000;LII (1-2):15-17.
9. Gopalanand MAm Anbuselvi R. On Ternary Quadratic Homogeneous Diophantine equation $x^{2}+P x y+y^{2}=z^{2}$, bulletin of Pure and Applied Sciences 2005; 24E (2):405-408.
10. Gopalan MA, Vidhyalakshmi S, Krishnamoorthy A, Integral solutions Ternary Quadraticax ${ }^{2}+b y^{2}=c(a+b) z^{2}$, Bulletin of Pure and Applied Sciences 2005;24E(2):443-446.
11. Gopalan MA, Vidhyalakshmiands S.Devibala, Integral solutions of $k a\left(x^{2}+y^{2}\right)+b x-$ $y=4 k a^{2} z^{2}$, Bulletin of Pure and Applied Sciences 2006; 25E(2): 401-406.
12. Gopalan MA, Vidhyalakshmiands S.Devibala, Integral solutions of $7 x^{2}+8 y^{2}=9 z^{2}$, Pure and Applied Mathematical Sciences, 2007;LXVI(1-2):83-86.
13. Gopalan MA, Vidhyalakshmi S.An observation on $k a x^{2}+b y^{2}=c z^{2}$, Acta Cienica Indica 2007; XXXIIIM (1):97-99.
14. Gopalan MA, Manjusomanath, vanitha $N$. Integral solutions of $k x y+m(x+y)=z^{2}$, Acta Cienica Indica 2007; XXXIIIM(4):1287-1290.
15. Gopalan MA, Kaliga Rani J.Observation on the Diophantine Equation $\mathrm{y}^{2}=\mathrm{Dx}^{2}+$ $y^{2}$, Impact J Sci Tech.2008;2(2):91-95.
16. Gopalan MA, Pondichelvi V. On Ternary Quadratic Equation $x^{2}+y^{2}=z^{2}+1$, Impact J.Sci. Tech, Vol (2), No:2,2008,55-58.
17. Gopalan Ma, Gnanam A. Pythagorean triangles and special polygonal num-
bers, International Journal of Mathematical Science.2010;9(1-2):211-215.
18. Gopalan MA, Vijayasankar A. Observations on a Pythagorean Problem, Acta Cienica Indica 2010;XXXVM(4):517-520.
19. Gopalan MA, Pandichelvi V. Integral Solutions of Ternary Quadratic Equation $Z(X-Y)=4 X Y$, Impact J Sci Tech. 2011;5(1):01-06.
20. Gopalan MA, Kaligarani J.On Ternary Quadratic Equation $X^{2}+Y^{2}=Z^{2}+8$, Impact J Sci Tech.2011;5(1):39-43.
