ISSN - 2250-1991 | IF : 5.215 | IC Value : 77.65

Mathematics

On Ternary Quadratic Equation 7x²-3y²=z²

R.Nandhini

Lecturer in Mathematics, Bharathidasan university Model College, Thiruthuraipoondi-614713.

The Ternary Quadratic Diophantine equation given by $7x^2-3y^2=z^2$ is analyzed for its different patterns of non-zero integral solutions. A few interesting relations between the solutions and special polygonal numbers are exhibited.

Ternary, Quadratic, Integral solutions

(3)

Research Paper

Introduction:

ABSTRACT

The theory of Diophantine equations offers a rich variety of fascinating problems (1-5). For an extensive review of sizable literature and various problems, one may refer [6-20]. This communication concerns with yet another interesting ternary quadratic equation $7x^2-3y^2=z^2$ for determining its infinitely many non-zero integral solutions. Also a few interesting relations among the solutions have been presented.

Notations Used: t_m-Polygonal number of rank n with size m.

P_k-Pentagonal number of rank n with size k.

Method of Analysis:

The Ternary Quadratic Diophantine Equation to be solved for its non-zero distinct integral solution is

```
7x^2-3y^2=z^2 (1)
```

PATTERN I

On substitution of linear transformations ($u \neq v \neq 0$)

x=u+3v, y=u+7v,	z=2z	(2)

in (1) leads to $u^2 = z^2 + 21v^2$

The corresponding solutions of (3) is the form

z=a²-21b²

v= 2ab (4)

 $u=a^{2}+21b^{2}$

In view of (4), the solutions of (1) can be written as

x=a²+21b²+6ab

 $y=a^{2}+21b^{2}+14ab$

z=2a²-42b²

A few interesting properties observed are as follows:

1. $z(a,1) + 2x(a,1)-8t_{3,a} \equiv 0 \pmod{8}$

2. z (1,b) – 2y (1,b) + $t_{90,b}+t_{82,b}=0 \pmod{110}$

3. $x(a,2) + z(a,2) - 6t_{3a} \equiv -84 \pmod{9}$ 4. x (1,b) - $t_{64b} + t_{22b} \equiv 1 \pmod{27}$ 5. x (1,b) + y (1,b) - $t_{102b} + t_{18b} \equiv 2 \pmod{62}$ 6. x (3a,2) + 3y (3a,2) − 72 t₃ = 84 (mod 252) 7. $z(A, A+1) + y(A,A+1) - t_{10A} + t_{6A} - 28t_{3A} \equiv 0 \pmod{2}$ 8. z (A,(A+1) (A+2)) +y (A, (A+1) (A+2))-t_{12.4}+ t_{8.4}-84P₄³≡0 (mod 2) 9. z (A,A(A+1))+y (A,A (A+1))-20 t_{3,A}+ t_{18,A}-28P_A⁵≡0(mod 17) 10. $z(a,1) + 2x(a,1) - t_{g_{8,a}} + t_{g_{0,a}} \equiv 0 \pmod{16}$ PATTERN II The solution of (3) is obtained from z=21m²-n² v=2mn (5) $u=21m^{2}+n^{2}$ Substituting (5) in (2), the corresponding integral solutions of (1) are given by $x=21m^{2}+n^{2}+6mn$ $y=21m^{2}+n^{2}+14mn$ $z=42m^{2}-2n^{2}$ A few interesting properties observed are as follows. 1. $z(m,4) - y(m,4) - t_{104,m} + t_{62,m} \equiv -48 \pmod{35}$ 2. $2x(m,2) - y(m,2) - t_{62.m} + t_{20,m} \equiv 4 \pmod{17}$ 3. $x(m,1)+ z(m,1)- t_{102,m} - t_{28,m} \equiv -1 \pmod{67}$ 4. y(m,3)+ 2x (m,3)- $t_{148,m}$ + $t_{22,m} \equiv 27 \pmod{141}$ 5. y (m,2)- $t_{32,m} - t_{14,m} \equiv 4 \pmod{47}$

6. x (1,n) + 3y (1,n) $-t_{16,n}+t_{8,n} \equiv 32 \pmod{52}$

7. Each of the following expressions represents a Nasty number

a) z(m,m) + 2x(m,m)

b) z (m,m) –x (m,m)

PATTERN III

Equation (3) can be written as

 $z^2 + 21 v^2 = u^2 * 1$ (6) Assume that $u = a^2 + 21b^2$ (7)

Write 21 as 21 = (i sqaureroot of (21)) (-i squareroot of 21)(8)

Define 1 =
$$\frac{(2+i \text{ square root of } 21)(2 - i \text{ square root of } 21)}{25}$$
 (9)

Use (7) and (8) in (6) and employing the method of factorization.

z+i square	root	of	21	v)=1/5[(a+isquare	root	of	21b)2	(2+1
square root	of 2	1)]					(10)	

Equating the real and imaginary parts in (10), we obtain

Z=	(a ² -21b ² -21ab)	(11)
u=	(a ² -21b ² +4ab)	(12)

Our interest is to obtain the integral solutions, so that the values of z and v are integers for suitable choices of the parameters 'a' and 'b'

Put a =5A, b=5B in (7), (11) and (12), we get

z=10A²-210B²-210AB

v= 5A ² -105B ² +20AB	(13)

 $u = 25A^2 + 525B^2$

Substituting (13) in (2), the corresponding integral solutions of (1) are given by

x= 40A²+210B²+60AB y= 60A²-210B²+140AB

z= 20A²-420B²-420AB

Thus equation (14) represents non-zero distinct integral solutions of (1) in two parameters.

A few interesting properties observed are as follows.

1) x (2,B)-z (2,B)- t_{1402,B} + t_{142,B}≡80 (mod 1590)

2) y (A,B)+2z (A,3)- t_{152 A}−t_{52 A}≡-9450 (mod 2002)

- 3) y (A,1)-x (A,1)- 40 t_{3 A} ≡-420 (mod 60)
- 4) x (A,3)-z (A,3)- $t_{102A} + t_{62A} \equiv 1290 \pmod{1460}$
- 5) $y(1,B)+4x(1,B)-t_{1002B}+t_{262B} \equiv 220 \pmod{1008}$
- 6) y (2A,5)-z (2A,5)- 320 t_{3 A} ≡5250 (mod 5440)

7) x (B+1,B)-2z(B+1,B) - $t_{2202 B} + t_{102 B} - 1800 t_{3B} \equiv 0 \pmod{1050}$

8) x (B(B+1),B)-2z(B(B+1),B) - 2700 t_{_{3,B}}+ t_{_{602,B}}-1800 P_{_3}{^5} \equiv 0 \pmod{1649}

PATTERN IV

Define 1 = (10+i square root of 21)(10-i square root of 21)(15) 121 The same procedure applied to find solution for PATTERN III is applied and obtained solution correspondingly for PATTERN IV.

```
x=154A<sup>2</sup>+1848B<sup>2</sup>+660AB
```

Thus equation (16) represents non-zero distinct integral solutions of (1) in two parameters.

A few interesting properties observed are as follows.

1. x(A,1)+z(A,1)-t_{762 Δ}+t_{14 Δ}≡-2772 (mod 110)

2. z(A,1)-y(A,1)-t_{50 A}+t_{6 A}≡-5544 (mod 2442)

3. $x(3A,4)+y(3A,4)-t_{6402A}+t_{66A} \equiv 14784 \pmod{29568}$

4. y(5,2B)-2z(5,2B)-t_{100002,B}+t_{18690,B}≡-6050 (mod 29536)

5. z (A,A(A+1) + 5y (A,A(A+1) - 2600 $t_{3,A}+t_{182,A}-13552P_{A}^{5}= 0 \pmod{1389}$

6. z (A,(A+1) (A+2)) +5y(A,(A+1) (A+2)) - 2430 t_{3,A}+t_{12,A}-40656P_{A}^{5}=0 \pmod{1219}

7. $z(A,A+1)+5y(A,A+1) - t_{2002,A}-t_{422,A}-13552 t_{3,A} \equiv 0 \pmod{1208}$

8. 2y (A, (A+1) (A+2)) –x (A,(A+1) (A+2)) – 500 $t_{3,A}+t_{18,A}+14520 P_A^{-3} \equiv 0 \pmod{257}$

9. 2y (A, A(A+1))–x (A,A(A+1)) – 684 $t_{3,A}$ + $t_{202,A}$ +4840 $P_A^{5} \equiv 0 \pmod{351}$

10.2y (A,A+1)-x(A,A+1)- $t_{492,A}+t_{8,A}+4840t_{3,A} \equiv 0 \pmod{242}$

Conclusion:

To conclude, one may search for other patterns of solutions and their corresponding properties.

Reference:

(14)

- Dickson LE.History of Theory of numbers, Chelsea Publishing Company, New York, 1952, 2.
- 2. Mordell LJ.Diophantine Equations, Academic press, London, 1969.
- Andre Weil, Number Theory: An approach through history: from hammurapi to legendre / Andre weil: Boston (Birkhauser Boston, 1983.
- Nigel Smart P.The algorithmic Resolutions of Diophantine equations, Cambridge university press, 1999.
- 5. S mith DE.History of mathematics Dover publications, New York, 1953, I (II).
- Gopalan MA.Note on the Diophantine equation x²+axy+by²=z² Acta Ciencia India 2000; XXVM(2):105-106.
- Gopalan MA.Note on the Diophantine equation x²+xy+y²=3z² Acta Ciencia India 2000; XXVM(3):265-266.
- Gopalan MA, Ganapathy R, Srikanth R.on the Diophantine equation z²=Ax² + By², Pure and Applied Mathematical Sciences 2000;LII (1-2):15-17.
- Gopalanand MAm Anbuselvi R. On Ternary Quadratic Homogeneous Diophantine equation x²+Pxy+y²=z², bulletin of Pure and Applied Sciences 2005; 24E (2):405-408.
- Gopalan MA, Vidhyalakshmi S, Krishnamoorthy A, Integral solutions Ternary Quadraticax²+by²=c(a+b)z², Bulletin of Pure and Applied Sciences 2005;24E(2):443-446.
- Gopalan MA, Vidhyalakshmiands S.Devibala, Integral solutions of ka (x²+y²)+bxy=4ka²z², Bulletin of Pure and Applied Sciences 2006; 25E(2): 401-406.
- 12. Gopalan MA, Vidhyalakshmiands S.Devibala, Integral solutions of $7x^2 + 8y^2 = 9z^2, \label{eq:solution}$ Pure and Applied

Mathematical Sciences, 2007;LXVI(1-2):83-86.

- Gopalan MA, Vidhyalakshmi S.An observation on kax²+by²=cz², Acta Cienica Indica 2007; XXXIIIM (1):97-99.
- Gopalan MA, Manjusomanath, vanitha N. Integral solutions of kxy+m(x+y)=z², Acta Cienica Indica 2007; XXXIIIM(4):1287-1290.
- Gopalan MA, Kaliga Rani J.Observation on the Diophantine Equation y²=Dx² + y², Impact J Sci Tech.2008;2(2):91-95.
- Gopalan MA, Pondichelvi V. On Ternary Quadratic Equation x²+y²=z²+1, Impact J.Sci. Tech, Vol (2), No:2,2008,55-58.
- 17. Gopalan Ma, Gnanam A. Pythagorean triangles and special polygonal num-

bers, International Journal of Mathematical Science.2010;9(1-2):211-215.

- Gopalan MA, Vijayasankar A. Observations on a Pythagorean Problem, Acta Cienica Indica 2010;XXXVM(4):517-520.
- Gopalan MA, Pandichelvi V. Integral Solutions of Ternary Quadratic Equation Z(X-Y)=4XY, Impact J Sci Tech. 2011;5(1):01-06.
- Gopalan MA, Kaligarani J.On Ternary Quadratic Equation X²+Y²=Z²+8, Impact J Sci Tech.2011;5(1):39-43.