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The non-trivial integral solutions of the ternary quadratic equation 
2 2 43x xy y z+ + =   are obtained. Some 

interesting relations among the solutions are presented.

Mathematics

Introduction 
 
Ternary quadratic equations are rich in variety. For an extensive review of sizable literature and 

various problems; one may refer [1-5]. In this communication, we consider yet another 

interesting ternary quadratic equation 2 2 43x xy y z   and obtain infinitely many non-

trivial integral solutions. A few interesting relations between the solutions are presented. 

Method of Analysis: 

The equation to be solved is 2 2 43x xy y z      (1) 

Pattern: I 

Setting  
x u v
y u v
 
 

       (2) 

The equation (1) simplifies to  

2 2 45u v z     (3) 

Equation (3) also takes the form 

            (4) 

 

The solutions satisfying (4) are given by 
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    (5) 

In view of (5), the integral solutions of (1) are found to be  
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3 2
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x p pq q

y q pq p

z q pq p

  

  

  

       (6)   

Assume that 

Equation (6) also takes the form  

2 2 4 24u v z u  

  

  (7) 

  
2 2 2( 2 ) 5q p p         (8)   

The solutions of (8) are represented in the form 

   2 2

2 2

2

5

5 4

p rs

r s

q r s rs





 

  

  (9) 

In view of (9), equation (6) is seen to be   

  

(10) 

 

Observations: 

1.    When 4r s , 

        (i) 2( 3 )y x is a perfect number. 

       (ii)  3
2

y x is represented by a quadratic number. 

      (iii)  3( 3 )y x is a nasty number. 

2.    When 2s r , 

        (i)  ( 3 )y x is a perfect square. 

       (ii)  6( 3 )y x is a nasty number. 

       (iii)  9( 3 )y x is a quadratic number. 

3.    2 0(mod4)z x   

4.     For the following choices of r and s  namely  

  (i)   2 2 2 2, 2( )r p q s p pq q      

  (ii)   2 2 2 2, 2( )r P Q s Q PQ P      the value of z  in each case is a 
perfect square.  
 

2 2 24q pq p   

3 3 2 2 2 2 2

4 4 2 2 3 3

2 2

60 12 20 (5 )

75 3 90 140 28
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    
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 



Volume : 5 | Issue : 3 | March 2016 ISSN - 2250-1991 | IF : 5.215 | IC Value : 77.65

460  | PARIPEX - INDIAN JOURNAL OF RESEARCH

For the sake of simplicity and clear understanding a few numerical examples are given in 

Table 1.a. below: 

Table: 1.a. 
r  s  x  y  z  
1 2  55  21  1 
1 3 128 48  4  
2  4  880  336  4  
3 5  3200 1200  20 
2 3 527 189  11 

 

 

Pattern: II 

Using completion of square, the equation (1) reduces to  

2 2 2 2(2 3 ) (2 ) 5x y z y        (11)   

Choose two non-zero integers p and q such that  

          

    (12) 

 

 

Solving by the method of cross multiplication, another choice of solution of (1) is represented 

in the form as 

2 2

2 2

(10 12 2 )
8

(10 2 )

x p pq q t
y pqt

z p q t

  


 

                                  (13)  

 

Observations 

1.  When 2,t   each of the expressions 23(2 3 2 )x y z  and 
215(2 3 2 )x y z  is a nasty number. 

2.   When 23 ,t  2(2 3 2 )x y z  is a nasty number. 

2

2

(2 3 2 )

(2 3 2 ) 5

p x y z qy

q x y z py

  

  

3.   When 215 ,t  2(2 3 2 )x y z  is a nasty number. 

4.   x is a perfect square for the choices of p and q given by  

2 2 2 22 , 10p R S q R S    . 

 5.   z x is a perfect square for the choices of p and q given by   

2 2 236 , 60 -3 .p R q R S   
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