On the Ternary Quadratic Equation

$$
x^{2}+3 x y+y^{2}=z^{4}
$$

R.Anbuselvi	Department of Mathematics, A.D.M. College for Women (Auton- omous), Nagapattinam - 600 001, Tamil Nadu, India.
S.A.Shanmugav adivu	Department of Mathematics, Thiru.Vi.Ka. Govt. Arts College, Tiru- varur- 610003, Tamil Nadu, India.

The non-trivial integral solutions of the ternary quadratic equation $x^{2}+3 x y+y^{2}=z^{2}$ are obtained. Some interesting relations among the solutions are presented.

KEYWORDS ternary quadratic, integral solutions.

Introduction

Ternary quadratic equations are rich in variety. For an extensive review of sizable literature and various problems; one may refer [1-5]. In this communication, we consider yet another
interesting ternary quadratic equation $x^{2}+3 x y+y^{2}=z^{4}$ and obtain infinitely many non-
trivial integral solutions. A few interesting relations between the solutions are presented.
Method of Analysis:
The equation to be solved is $x^{2}+3 x y+y^{2}=z^{4}$
Pattern: I
Setting

$$
\left.\begin{array}{l}
x=u+v \\
y=u-v
\end{array}\right\}
$$

(2)

The equation (1) simplifies to

$$
\begin{equation*}
5 u^{2}-v^{2}=z^{4} \tag{3}
\end{equation*}
$$

Equation (3) also takes the form

$$
\begin{equation*}
4 u^{2}-v^{2}=z^{4}-u^{2} \tag{4}
\end{equation*}
$$

The solutions satisfying (4) are given by

$$
\left.\begin{array}{l}
u=p^{2}+q^{2} \\
v=2\left(p^{2}+p q-q^{2}\right) \\
z^{2}=q^{2}+4 p q-p^{2}
\end{array}\right\}
$$

In view of (5), the integral solutions of (1) are found to be
$x=3 p^{2}+2 p q-q^{2}$
$y=3 q^{2}-2 p q-p^{2}$
(6)
$z^{2}=q^{2}+4 p q-p^{2}$

Assume that

Equation (6) also takes the form

$$
\begin{align*}
& q^{2}+4 p q-p^{2}=\alpha^{2} \\
& (q+2 p)^{2}=5 p^{2}+\alpha^{2} \tag{8}
\end{align*}
$$

The solutions of (8) are represented in the form
$\left.\begin{array}{c}p=2 r s \\ \alpha=5 r^{2}-s^{2} \\ q=5 r^{2}+s^{2}-4 r s \\ \text { In view of (9), equation (6) is seen to be }\end{array}\right\}$

$$
\left.\begin{array}{l}
x=60 r^{3} s+12 r s^{3}-20 r^{2} s^{2}-\left(5 r^{2}+s^{2}\right)^{2} \\
y=75 r^{4}+3 s^{4}+90 r^{2} s^{2}-140 r^{3} s-28 r s^{3} \\
z=5 r^{2}-s^{2}
\end{array}\right\}_{\text {Observations: }}
$$

1. When $r=4 s$,
(i) $2(y+3 x)$ is a perfect number.
(ii) $\frac{y+3 x}{2}$ is represented by a quadratic number.
(iii) $3(y+3 x)$ is a nasty number.
2. When $s=2 r$,
(i) $(y+3 x)$ is a perfect square.
(ii) $6(y+3 x)$ is a nasty number.
(iii) $9(y+3 x)$ is a quadratic number
3. $z^{2}+x \equiv 0(\bmod 4)$
4. For the following choices of r and s namely
(i) $r=p^{2}+q^{2}, s=2\left(p^{2}+p q-q^{2}\right)$
(ii) $r=P^{2}+Q^{2}, s=2\left(Q^{2}-P Q-P^{2}\right)$ the value of z in each case is a perfect square.

Forthe ske of simplicity and cear undersanding a few numerical examples are given in

 Table la below:
Table: 1.a.

r	s	x	y	z
1	2	55	-21	1
1	3	128	-48	-4
2	4	880	-336	4
3	5	3200	-1200	20
2	3	527	-189	11

Pattern: II

Using completiono ofsguare, the equation (1) redices to

$$
\begin{equation*}
(2 x+3 y)^{2}-\left(2 z^{2}\right)^{2}=5 y^{2} \tag{11}
\end{equation*}
$$

Chose two nor-zeroinitegers pand guch that

$$
\begin{align*}
& p\left(2 x+3 y-2 z^{2}\right)=q y \tag{12}\\
& q\left(2 x+3 y+2 z^{2}\right)=5 p y
\end{align*}
$$

 in the form as

$$
\begin{aligned}
& x=\left(10 p^{2}-12 p q+2 q^{2}\right) t \\
& y=8 p q t \\
& z=\left(10 p^{2}-2 q^{2}\right) t
\end{aligned}
$$

Obseratainons

1. Whent $=a^{2}$, eachof the expressions $3\left(2 x+3 y-2 z^{2}\right)$ and
$15\left(2 x+3 y+2 z^{2}\right)$ is anasty umber.
2. Whent $=3 a^{2},\left(2 x-3 y-2 z^{2}\right)$ is a nasty umber.
