Quadratic Diophantine Equation With Four Unknowns

$$
\left(x^{2}-y^{2}\right)^{2}+\left(z^{2}-8\right)^{2}=w^{4}
$$

R.Anbuselvi	Department of Mathematics, A.D.M. College for Women (Auton- omous), Nagapattinam -600 001, Tamil Nadu, India.
N.Ahila	Department of Mathematics, Thiru.Vi.Ka.Govt. Arts College, Tiru- varur- 610003, Tamil Nadu, India.

The non-trivial integral solution of the quadratic Diophantine equation with four unknowns $\left(x^{2}-y^{2}\right)^{2}+\left(z^{2}-8\right)^{2}=w^{4}$. is obtained. A few interesting relations among the solutions are presented.

KEYWORDS

quadratic, integral solutions.

Introduction
The Ternary Quadratic Diophantine Equation offers an unlimited field for research
because of their variety. For an extensive review of various problems, one may refer [1-5].This
communication concerns with yet another interesting ternary quadratic equation with four
unknowns $\left(x^{2}-y^{2}\right)^{2}+\left(z^{2}-8\right)^{2}=w^{4}$. for determining its infinitely many non-zero
integral solutions. Also a few interesting relations among the solutions have been presented.

Method of Analysis
The equation under consideration is

$$
\begin{equation*}
\left(x^{2}-y^{2}\right)^{2}+\left(z^{2}-8\right)^{2}=w^{4} \tag{1}
\end{equation*}
$$

Taking

$$
x^{2}-y^{2}=2 a b
$$

(2) and

$$
z^{2}-8=a^{2}-b^{2}
$$

(3)
in the equation (1), it is written as

$$
a^{2}+b^{2}=w^{2}
$$

(4)

Again, setting
$a=r^{2}-1, \quad b=2 r$
(6)
and the equation (3) reduces to

$$
\begin{equation*}
z=r^{2}-3 \tag{7}
\end{equation*}
$$

Substitution of (5) into (2) yields

$$
\begin{equation*}
x^{2}-y^{2}=4 r\left(r^{2}-1\right) \tag{8}
\end{equation*}
$$

CASE (1):

Let
$x-y=4$
$x+y=r^{3}-r$
Solving the system of equations (9), we have
$x=\frac{1}{2}\left(r^{3}-r+4\right)$
$y=\frac{1}{2}\left(r^{3}-r-4\right)$
Thus the equations (6), (7) and (10) represent the non-trivial integral solutions of (1).

A few numerical examples are given in table 1(a) below:

Table: 8.1(a)

r	x	y	z	w
1	2	-2	-2	2
2	5	1	1	5
3	14	10	6	10
4	32	28	13	17
5	62	58	22	26
6	107	103	33	37

(1) Each of the expressions $z+3$ and $w-1$ is a perfect square.
(2) Each of the expressions $x-y$ and $w-z$ is identically equal to four.
(3) $x+y+$ ris acube.
(4) $(x+y)^{2}=(w-1)(w-2)^{2}=(z+3)(w-2)^{2}=(z+2)^{2}(z+3)=(z+2)^{2}(w-1)$
(5) $4(x+y)^{2}=(z+w)^{2}(z+3)=(z+w)^{2}(w-1)$

Case (2):
In(8), ake

$$
\begin{align*}
& x-y=r-1 \\
& x+y=4 r(y+1) \tag{II}
\end{align*}
$$

(12)

Not that x and y are integers only when $1=2 a+1, \alpha=0,1,2, \ldots, \ldots$

Herece, tre intergal solutions of (I) are fund tobe

$$
\begin{aligned}
& x=8 a^{2}+13 a+4 \\
& y=8 a^{2}+11 a+4 \\
& z=4 a^{2}+4 a-2 \\
& w=4 a^{2}+4 a+2
\end{aligned}
$$

(13)
(6) $z+w=2(x-y)(x-y+2)$
(4) $\frac{w+z}{a^{2}+a}$ is a ache.
(5) $z+w=16 T_{a}$
(7) $x+y+$ lis always aperect square.

Afew mumerical examples ar given in able (b) bebor:
(8) $3 x-5 y+2 z+2 w=-8$.

Table: 1(b)
(9) $x-3 y+2 z+2 w=-8$.

a	x	y	z	w

\[\)| 0 | 4 | 4 | -2 | 2 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 25 | 23 | 6 | 10 |
| 2 | 62 | 58 | 22 | 26 |
| 3 | 115 | 109 | 36 | 40 |
| 4 | 184 | 176 | 78 | 82 |
| 5 | 269 | 259 | 118 | 122 |
| The following | | | | |
| noticed front the table 8.1(6): | | | | | results are

\]

(1) Each of the expresion $x+y-4(2 \alpha+1)$ and $y+z+w-3 a$ is aperfect syuare.
(2) $x+y$ is witten as a differenece of two squares.
(3) w-zis identically yequal to 4 .

$$
\begin{align*}
& x-y=4 r \\
& x+y=r^{2}-1 \tag{14}
\end{align*}
$$

Solving the above two equations, we have

(15)
$y=\frac{1}{2}\left(r^{2}-4 r-1\right)$

Note that x and y are integers only when $r=2 \beta+1, \beta=0,1,2, \ldots$.

Hence, the integral solutions of (1) are found to be

$$
\begin{align*}
& x=2 \beta^{2}+6 \beta+2 \\
& y=2 \beta^{2}-2 \beta-2 \tag{16}\\
& z=4 \beta^{2}+4 \beta-2 \\
& w=4 \beta^{2}+4 \beta+2
\end{align*}
$$

A few numerical examples are given in table 8.1(c) below:

Table: 8.1(c)

β	x	y	z	w
0	2	-2	-2	2
1	10	-2	6	10
2	22	2	22	26
3	38	10	46	50
4	58	18	78	82

(4) $z+w=16 T_{\beta}$
(5) Each of the expressions $\frac{z+w-x+y}{2}, x+y$ and $8(z+w)$ is written as the
difference of two squares.
(6) $x+y-z \equiv((\bmod 2)$

The following results are noticed from the tatbe 8. (c):
(1) $x+y=8 I_{\beta}$
(2) Eachofthe expressions $w-z$ and $\alpha+y+1$ is always aperfect square.
(3) $\frac{x-y-4}{\beta}$ is identically equal to8.
(7) $\frac{w+z}{\beta^{2}+\beta}$ is acube.
(8) $x+z-10 \beta,(\beta>0)$ is a nasty number.

References

1. L.E. Dickson, History of Theory of numbers, Vol.2, Chelsea Publishing Company, New York, 1952.
2. L.J. Mordell, Diophantine Equations, Academic press, London, 1969
3. Andre Weil, Number Theory: An approach through history: from hammurapi to legendre / Andre weil: Boston (Birkahasuserboston, 1983.
4. Nigel P. Smart, The algorithmic Resolutions of Diophantine equations, Cambridge university press, 1999.
5. Smith D.E History of mathematics vol.I and II, Dover publications, New York 1953.
