
Volume : 5 | Issue : 11 | November-2016 ISSN - 2250-1991 | IF : 5.215 | IC Value : 77.65

444 | PARIPEX - INDIAN JOURNAL OF RESEARCH

Analysis of Replacement Policies of Cache Memory

Vidya Dahake Department of ECE, RCOEM Nagpur University, Nagpur-13

Nitesh Malewar
Department of Power Engineering, NPTI Nagpur University, Nag-
pur

KEYWORDS Page fault rate, Hit rate, Performance of cache , LRU, LFU, FIFO

A
B

S
TR

A
C

T

In current generation computers , memory hierarchy is formed by keeping cache on or outside the processor, registers
inside, and virtual memory on (seconday memory) Hard disk. The concept of locality of reference is used to produce memory
hierarchy work efficiently. In recent years various advances have been made to improve the cache memory performance
on the basis of page fault rate, latency, speed, replacement policies and energy consumption. Cache replacement policy
is important design parameter which affects the overall performance of processor and also more important with recent
technological moves towards fully associative cache. This paper provides a survey of current generation processors on the
basis of various factors effecting cache memory performance. The main point of this paper is the study and performance
analysis of the cache replacement policies.

Engineering Original Research Paper

INTRODUCTION
Cache, a fastest semiconductor memory is used to store fre-
quently subset of data or instruction from relatively slower
memory. It avoids having to go to main memory every time
when this same information is required. The table shows the
caching hierarchy

The concept of locality of reference is used to get data
or instructions from program. At one time the processor
accesses a small portion of address space. Cache memory
performance is calculated on the basis of page fault rate,
miss penalty, and average access time. Page fault Rate is
defined as the fraction of memory accesses that are not
found in the cache while The percentage of accesses that
result in cache hits is known as the hit rate or hit ratio of
the cache. Miss Penalty is defined as the total number of
cycles CPU is stalled for a memory access determined by
the sum of Cycles (time) to

replace a block in the cache, upper level and Cycles (time) to
deliver the block to the processor. Average Access Time and
CPU execution time is calculated as:

Average Access Time = HT x HR + MP x MR

 CPU Execution Time = (CCC + MSC) x CCT

 MSC = Number of Misses x MP

 = IC x (Misses / Instructions) x MP

 = IC x [(Memory Access / Instructions)] x MR x MP

here, HT= Hit Time, HR= Hit Rate

 MP= Miss Penalty, MR= Miss Rate,

CCC= CPU Clock Cycles, MSC= Memory Stall Cycles

CCT= clock cycle time.

Number of cycles for memory read and memory write can be
different similarly Miss penalty to read can be different from
write.

Memory Stall Clock Cycles = (Memory read stall cycles)
+ (Memory write stall cycles)

STRATEGY OF CACHE DESIGN
The three main units of a processor are data, execution, and
storage unit. The data unit is responsible for organizing data
of a program to be fetched and decode. The execution unit
perform arithmetic and logical operations and execute in-
structions. The storage unit establishes interface through
a temporary storage between other two units. The essen-
tial components of storage unit are cache memory, Transla-
tion Look-aside Buffer (TLB). Address Space Identifier Table
(ASIT), a Buffer Invalidation Address Stack (BIAS) and write
through buffers may also be available in storage unit. Tech-
nology has made it possible to fabricate millions transistors
on a single chip because of which a small portion is needed
to make a powerful processor. To minimize inter-chip data
transfers, on-chip memory is placed inside the processor. Ta-
ble1 shows cache design strategy and specifications of a var-
ious recent processors launched by Intel and AMD. There are
various techniques of mapping for determining cache organ-
ization. A mapping technique is used to map large number
of main memory blocks into a small number of lines of the
cache memory and tag bits within every cache line examine
which block of main memory is currently available in a par-
ticular cache line. Out of three mapping approaches i.e. direct
mapping, associative mapping and set associative mapping,
set associative caches are considered best because of highest
hit rate and less access time. But beyond a certain limit, in-
creasing cache size has more of an impact than increasing as-
sociativity. Replacement policies plays an important role in the
design of cache memory because it makes decision to select

Volume : 5 | Issue : 11 | November-2016 ISSN - 2250-1991 | IF : 5.215 | IC Value : 77.65

445 | PARIPEX - INDIAN JOURNAL OF RESEARCH

a particular line of cache memory is to be replaced with the
desired main memory block. First in First Out (FIFO), optimal
and Least Recently Used (LRU) are algorithms used for mak-
ing such decision. Least Recently Used (LRU) is the most effec-
tive policy because it is easy to implement, according to this
more recently used words are likely to be referenced again.
Write Caching, Write Back and Write Through are three main
caching policies that decide how consistency is maintained be-
tween cache lines and corresponding main memory blocks. In
write back policy write operations are made to cache only, the
main memory is updated only when the corresponding cache
line is flushed from cache memory. In write through policy
write operations are performed to main memory along with
the cache memory. The write back policy can result in incon-
sistency if two caches hold same line, and line is updated in
one cache, then the other cache will unknowingly holds an
invalid value. Inconsistency can also occur with the write-
through policy, unless the other caches monitor to memory
traffic or get direct notification of update. So the considerable
traffic is generated in both write through and write back poli-
cy, a single bit error of any of these cannot be tolerated unless
Error Correcting Code (ECC) is provided.

Mostly, Level 1 cache consists of Level 1 data cache and
Level 1 instruction cache. When the first on chip cache
made an appearance then some designs consisted of a
single cache to store references to both instructions and
data. Recently, it has become common to split cache
memory into two parts one for instructions and the other
for data. When the processor attempts to fetch an instruc-
tion from main memory then first it consults with the L1
instruction cache similarly, when the processor attempts to
fetch data from main memory then first it consults with
the L1 data cache. The main advantage of a unified cache
is higher hit rate than split caches because it balances
load between data and instruction fetches automatically.
In unified cache only one cache design and implementa-
tion needed. On the other hand the split cache removes
problem of contention between fetch/decode and execu-
tion unit. This contention can reduce performance by in-
terfering with instruction pipeline. But, many implemen-
tation attribute of processors like replacement algorithm,
mapping function and write policies are not publicly avail-
able. Intel x86 processors and AMD processors employ a
direct-mapped Level 1 cache, and Level 2 cache between
2 to 4 way set associative. The L3 and higher level caches
could be between 16-way to 64-way set associative. Most
of them use LRU (least recently used replacement policy),
and a write-back cache.

CACHE REPLACEMENT POLICIES
Today’s processors include multiple levels of cache memo-
ry and the high associativity [4] has made it important to re-
check the effectiveness of various cache replacement policies.
In cache memory, when all the lines in a set of cache become
full and a new block from main-memory needs to be placed in
cache, then the cache controller has to be remoce a line from
cache set and replace it with the new block from main-memo-
ry. The modern processors employ cache replacement policies
such as LRU (Least Recently Used)[5], Random[6], FIFO(First
in First Out)[4], optimal. In all these policies, except Random,
determine which block of cache memory to replace by look-
ing only at the past references. Least Recently Used replace-
ment needs a number of status bits to maintain record of
each cache block accessed. If the set-associativity increases,
the number of these bits also increases. Random replacement
policy can be used to reduce the complexity and cost of LRU
replacement policy but at the expense of performance. Recent
studies describe cache design space with relatively finite asso-
ciativity, and consider only true Least Recently Used replace-
ment policy [7]. The Least Recently Used replacement policy
uses access pattern of a program memory to predict that most
recently accessed cache line will most likely to be accessed
again, and the cache line which has been Least Recently Used
will be replaced by cache controller. The LRU stack is as

Even though the Least Recently Used policy is more efficient, it
requires a number of bits to maintain a record for each block,
contains details such that when a block is processed before.
In LRU algorithm, each time when a cache hit or miss occurs
then the block shifting in LRU frame requires more time and
more power. Random cache replacement policy can be used
to minimize the complexity and cost of LRU. Random replace-
ment policy selects a candidate block to be removed random-
ly from all the cache lines in the set. This policy does not re-
quires to keep any information of access history. It has been
used in ARM processors for its simple designing. In optimal
cache replacement policy a counter is assigned to each cache
block, which loaded in cache memory. For each reference of
block the counter is incremented by one. When the cache is
full and has a new block to be inserted, then the block with
the lowest counter is dicarded.

METHODOLOGY
Here we used SMP3.0, is a trace-driven simulator for the
analysis and teaching of cache memory systems on symmet-
ric multiprocessors. [8]. This simulator is a cost effective tech-
nique of performance evaluation of computer system design,
specially for cache design, TLB, and paging system. The sim-
ulator has a full graphic and user-friendly interface, and it op-
erates on PC systems with Windows. In this, we used some
SPEC92 Benchmarks such as: HYDRO, NASA7, CEXP, MDLJD,
EAR, COMP, WAVE, SWM and UPCOMP for the analysis of re-
placement policies.

 SIMULATION SETUP
Number of Processor = 1

Cache Coherence Protocol = MESI

Bus Arbitration = optimal

Word Wide (bits) = 16

Blocks in Main Memory = 8192

Block size = 32 bytes

Main Memory size = 256 K Bytes

Blocks in Cache = 128

Cache size = 4KB

Mapping = 8 way- set associative mapping

Writing Strategy = Write Back

Replacement Policies = RANDOM, FIFO, optimal, LRU

CONCLUSION
 In this, we studied the recent advances made in the design of
cache for improving memory management unit access time,
energy consumption. In this we describes the cache replace-
ment policies algorithm in the form of their performance anal-
ysis. The analysis of experimental results shows that LRU is the
most scalable cache replacement policy. From this paper, we

Volume : 5 | Issue : 11 | November-2016 ISSN - 2250-1991 | IF : 5.215 | IC Value : 77.65

446 | PARIPEX - INDIAN JOURNAL OF RESEARCH

found that speed of processors growing continuously, so elim-
inating cache misses is more important parameter in the over-
all performance of the Processor. So caches becoming more
set associative and more significance.

REFERENCES
1. C. Kozyrakis, “Advanced Caching Techniques.” 2008.

2. Swadhesh Kumr, Dr. PK Singh, “An Overview of Hardware Based Cache

Optimization Techniques,” International Journal of Advance Research in Sci-

ence and Engg, vol. no. 4, Special Issue (01), September 2015.

3. Gavrichenkov, “First Look at Nehalem Microarchitecture”, Novem-

ber2008,http://www.xbitlabs.com/articles/cpu/display/Nehalem microarchi-

tecture.html.

4. Intel Xscale-Core ,Developer’s Manual,December 2000, http://developer.in-

tel.com

5. Ackland B., Anesko D., Brinthaupt D., Daubert S.J, Kalavade A.., Knoblock

J., Micca E., Moturi M., Nicol C.J., O’Neill J.H., Othmer J., Sackinger E., Sin-

gh K. J.,Sweet J., Terman C. J., and Williams J., “A Single-Chip,1.6 Billion,

16-b MAC/s Multiprocessor DSP,” IEEE Journal of Solid-state circuits, Vol. 35,

No. 3, March 2000, pp. 412-423.

6. David A. Patterson, John L. Hennessy. “Computer organization and design:

the hardware/software interface”. 2009

7. Cantin J. F, Hill M. D., Cache Performance of the SPEC CPU2000Bench-

marks,http://www.cs.wisc.edu/multifacet/misc/spec2000 cachedata

8. Miguel A. VegaRodríguez, Juan M. SánchezPérez,Juan A. GómezPulido “An

Educational Tool for Testing Caches on Symmetric Multiprocessors”.Micro-

processors and Microsystems, Elsevier Science, vol. 25, no. 4, pp. 187194.

June 2001. ISSN 01419331.

9. 2nd IEEE International Conference on Engineering and Technology (ICET-

ECH), 17th & 18th March 2016, Coimbatore, TN, India. 978-1-4673-9916-

6/16/$31.00 ©2016 IEEE An Overview of Modern Cache Memory and Per-

formance Analysis of Replacement Policies

