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T The aim of this paper is to introduce the class STSs (α) (0 < α ≤ 1) satisfying the condition.
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We study neighbourhoods of this class and also prove a necessary and sufficient condition in terms of convolution for a 
function f to be STSs (α). Further more, it is shown that class STSs (α) is closed under convolution with function f  which 
are convex univalent in E.
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1. Introduction :    Let A be the class of functions analytic in the unit 

disk E normalized by        f (0) = f (0) – 1 = 0 and let S denote the class 

of univalent functions in A Let ST ()   (0   < 1) denote the class of 

functions in A that are starlike of order , and let CV denote the class of 

convex functions. Then we have the classical analytic characterizations. 
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Any f  A has the Taylor’s expansion f (z) = z + a2 z2 + ….. in E. The 

convolution or Hadamard product of f (z) = 
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 Strongly starlike and strongly convex functions were introduced and 

discussed by D.A. Brannan and W.E. Kirwan [1] and also by Stankiewincz   

[ 4 ]  and  [ 5 ] 

 The notion of  - neighbourhood was introduced by St. Ruscheweyh   

[ 2 ]. 

Definition 1.1. For   0 the  - neighbourhood of f ( z )  A is define by 

(1.3)    
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 To prove our results we need the following lemma 

Lemma A. [ 3 ]  If  is a convex univalent function with  (0) =  (0) – 1 in 

the unit disk E and g is starlike univalent in E, then for each analytic 

function F in E, the image of E under   
  z g  

z gF  



    is a subset of the convex  

hull of F (E) 

Now we give the definition of STSs () as follows. 
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Definition 1.2. A function  (z) is said to be in the class STSS () (0 <   1) 

if  all  z  E. 

(1.4)    
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   STSS () means that the image of E under  
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 . lies in the 

region        = |arg w| <  /2, equivalently   
   zfzf
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    t ei /2,             

t  R+ 

 Now let us give a characterization for a function f   A to be in     

STSS () by means of convolution. 

Definition 1. 3 : Let )(SSST   be the class of all analytic functions defined in 

E  by 
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Theorem 1.1.   STSS () if and only if 0
z

)z)(H*f(
 ,  z  E and for all  

).(SST)z(H S   



Volume : 5 | Issue : 10 | October 2016 ISSN - 2250-1991 | IF : 5.215 | IC Value : 77.65

221  | PARIPEX - INDIAN JOURNAL OF RESEARCH

 

 

4 

Proof:   Let us assume that 0
z

)z)(H*f(
 then for all )(SST)z(H S   and     

z  E, We have. 
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Normalising the function within the brackets we get 

0
z

)z)(H*f(
  in E where H ( z ) is the function defined in ( 1. 5  ) 

Lemma 1.1. Let ).(SSTzcz)z(H S
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Then comparing the coefficients on either side we get 
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Hence when n is even 
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When n is odd, 
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Lemma 1.2. For   A and for every   C such that || < , if  
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Theorem1. 2. For   A and   C, || <  < 1, assume F ( z ) STSS (). 

Then  

N ()  STSS ()  where ' =  sin(/2). 
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Proof: Let )f(Niniszbz)z(g)(SSTH n
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Lemma 1.3. If g  STSs() then           STSTS
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Since  is convex  3   and hence  
  

zG
zGz  It can be easily seen that  

STS ()  ST(). 

Thus G (z)  STS ()  ST (). 

Theorem 1.3. Let f  CV and g  STSs (). Then ( f  * g ) ( z )  STSs (). 

Proof. Let f ( z )  CV, g ( z )  STSs (), G ( z ) =    
2

zg z-g -  and  is a 

convex domain. Since g ( z )  STSs (),       )( ST 



2

zgzgzG , by 

Lemma 1.3.  

Hence by an application of Lemma A we get 
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Since  is convex and g  STSs (). This proves that ( f * g ) ( z )  STSs 

(). 
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