	Original Research Paper	Mathematics
September 200 Parts	Domination and Inverse Domination Of <i>f</i> (N×R)	Parameters

Stephen John. B	Department of Mathematics, Annai Velankanni College, Tholaya- vattam, Tamil Nadu, India
Annie Subitha. M.P	Department of Mathematics, Annai Velankanni College, Tholaya- vattam, Tamil Nadu, India
R.John Stebaniya (st.)	Department of Mathematics, Annai Velankanni College, Tholaya- vattam, Tamil Nadu, India

The domination and inverse domination parameters have been already studied, in this paper our interest is to evaluate the domination and inverse domination parameters for the flower graph $f_{(n\times r)}$. Also we have proved the inverse domination parameter for the flower graph $f_{n\times r}$ of order n r-1 is $\gamma' f_{n\times r} = \{(k-1)n+\gamma' (f_{n\times(3k+i)})k=1,2,3; i=0,1,2 \text{ and } r \le 11\}$ where $\gamma' (f_{n\times r})k=1,2,3$ be the inverse domination number of $f_{(n\times r)}$.

KEYWORDS

Flower Graph, Dominating set, Inverse dominating set Domination and Inverse domination number.

1. Introduction:

Let G = (V, E) be a flower graph of order n(r - 1). A subset *D* of *V* is called dominating set if for every vertex $v \in V - D$, there exists a vertex *u* in such that *u* is adjacent to *v*. The smallest cardinality of a minimum dominating set in *G* is called the domination number of *G* and is denoted by $\gamma(G)$. Any dominating set with $\gamma(G)$ vertices is called γ -set of *G*.A dominating set *D'* contained in V - D is called an inverse dominating set of *G* with respect to *D*.The smallest cardinality among all minimum dominating sets, in V - D is called the inverse dominating set of *G* which has $\gamma'(G)$ vertices is called a γ' -set of *G*.

Definition: 1.1

If $e = \{u, v\}$ is an edge of *G*, written as e = uv, we say that *e* joins the vertices *u* and *v*. Also, we say that *u* and *v* are adjacent vertices, *u* and *v* are incident with *e*.

Definition: 1.2

A walk of a graph G is an alternating sequence of points and lines $v_0, x_1, v_1, x_2, v_2, \dots, v_{n-1}, x_n, v_n$ beginning and ending with points such that each line x_i is incident with v_{i-1} and v_i .

A walk in which all the vertices are distinct is called a Path. A path of n vertices is denoted by P_n . A closed path is called a Cycle. Generally a cycle with n vertices is denoted by C_n .

Definition: 1.3

Let G = (V, E) be a graph. A subset D of V is called dominating set if every vertex in V - D is adjacent to a vertex in D. The minimum cardinality of a dominating set in G is called the domination number of G and is denoted by $\gamma(G)$.

Definition: 1.4

Let G = (V, E) be a graph. Let D be a minimum dominating set of G. If V - D contains a dominating set D' is called an inverse dominating set with respect to D the minimum cardinality of all inverse dominating sets of a graph G is called the inverse domination number of G and it is denoted by $\gamma'(G)$.

Definition: 1.5

The degree of vertex v in a graph G is the number of edges of G incident with v and is denoted by $d_G(v)$ or deg v. (or) simply d(v).

Definition: 1.6

A Graph *G* is called a $n \times r$ flower graph if it has *m* vertices which form a *n*-cycle and *r* sets of n - 2 vertices which form *r*-cycle around them *n*-cycle so that each *r*-cycle uniquely intersects with the *n*-cycle on a single edge. This graph is denoted by $f_{n \times r}$. It is clear that $f_{n \times r}$ has n(r - 1) vertices and *nr* edges. The *r* cycles are called the petals and the *n* cycles is called the centre of $f_{n \times r}$. Then *n* vertices which form the centre are all of degree 4 and all the other vertices have degree 2.

Theorem: 1.7

Let $G = f_{n \times r}$ then,

$$\gamma'(f_{n \times r}) = \{(k-1)n + \gamma'(f_{n \times \overline{3k+i}}), k = 1,2,3; i = 0,1,2 \text{ where, } r \le 11\}$$

Proof:

Let $G = f_{n \times r}$ be a flower graph of order n(r-1) and r = 3k + i

Case (i)

The flower graph $G = f_{n \times 3}$ is given in figure 1.1

Now the vertices of G can be partitioned in to two sets S_1 and S_2 such that

$$S_1 = \{v_{i \ 1} / i = 1, 2, ..., n\}$$
 and
 $S_2 = \{v_{i \ 2} / i = 1, 2, ..., n\}$

Let $D = \{v_{\overline{2l+1} \ 1} / i = 0, 1, 2, ..., [\frac{n}{2}]\}$ is the required minimum dominating set of G and

 $D' = \{v_{\overline{2l+2} \ 1} / i = 0, 1, 2, ..., [\frac{n}{2}]\}$ is the required inverse dominating set of *G*.

Thus the cardinality of *D* and *D'* is $\left[\frac{n}{2}\right]$.

Hence $\gamma(G) = \gamma'(G) = \left[\frac{n}{2}\right]$

The flower graph $G = f_{n \times 6}$ is given in figure 1.2

Figure 1.2

The vertices of G can be partitioned in to two sets S_1 and S_2 such that

 $S_1 = \{v_{i \ 1} / i = 1, 2, ..., n\}$ and

$$S_2 = \{v_{i,j} / i = 1, 2, ..., n; j = 2, 3, ..., 5\}$$

Let = {
$$(v_{\overline{2l+1} \ 1}), (v_{\overline{2l+1} \ 4}), (v_{2k \ 3})/$$
 $i, j = 0, 1, 2, ..., [\frac{n}{2}]; k = 1, 2, ..., [\frac{n}{2}]$ } is the required

minimum dominating set of G and

$$D' = \{ (v_{2i 1}), (v_{2j 4}), (v_{\overline{2k+1} 3}) / i, j = 1, 2, \dots, \left[\frac{n}{2}\right]; k = 0, 1, 2, \dots, \left[\frac{n}{2}\right] \} \text{ is the required}$$

minimum inverse dominating set of G.

Therefore, the cardinality of *D* and *D'* is $n + \left[\frac{n}{2}\right]$.

Hence,
$$\gamma(G) = \gamma'(G) = n + \left[\frac{n}{2}\right]$$

The flower graph $G = f_{n \times 9}$ is given in figure 1.3

Now the vertex of G can be partitioned in to two sets S_1 and S_2 such that

 $S_1 = \{v_{i \ 1} / i = 1, 2, ..., n\}$ and

$$S_2 = \{v_{i,j} / i = 1, 2, ..., n; j = 2, 3, ..., 8\}$$

Let
$$D = \{ (v_{\overline{2l+1} \ 1}), (v_{\overline{2l+1} \ 4}), (v_{\overline{2k+1} \ 7})(v_{2d \ 3})(v_{2d \ 6}) / i, j, k = 0, 1, 2, ..., [\frac{n}{2}]; d = 1, 2, ..., [\frac{n}{2}] \}$$

is a required minimum dominating set of G and

$$D' = \{ (v_{2i \ 1}), (v_{2j \ 4}), (v_{2k \ 7}), (V_{\overline{2d+1} \ 3}), (V_{\overline{3d+1} \ 6})/i, j, k = 1, 2, \dots, \left\lceil \frac{n}{2} \right\rceil; d = 0, 1, 2, \dots, \left\lceil \frac{n}{2} \right\rceil \} \text{ is the}$$

required minimum inverse dominating set of G.

Thus the cardinality of *D* and *D'* is $2n + \left[\frac{n}{2}\right]$.

Hence
$$\gamma(G) = \gamma'(G) = 2n + \left[\frac{n}{2}\right]$$

Thus, $\gamma(f_{n \times r}) = \left\{ (k-1)n + \left\lceil \frac{n}{2} \right\rceil \right\}$

$$\gamma'(f_{n \times r}) = \left\{ (k-1)n + \left\lceil \frac{n}{2} \right\rceil \right\}$$
, where $r = 3k$

Put k = 1 in eqn (1) we get, $\gamma(G) = \gamma'(G) = \left\lceil \frac{n}{2} \right\rceil$

Put k = 2 in eqn (1) we get, $\gamma(G) = \gamma'(G) = n + \left[\frac{n}{2}\right]$

Put k = 3 in eqn (1) we get, $\gamma(G) = \gamma'(G) = 2n + \left[\frac{n}{2}\right]$

Therefore, $\gamma(f_{n \times r}) = \left\{ (k-1)n + \left\lceil \frac{n}{2} \right\rceil \right\}$

 $\Rightarrow \gamma'(f_{n \times r}) = \left\{ (k-1)n + \left\lceil \frac{n}{2} \right\rceil \text{ where } r = 3k, r \le 11 \right\}$

Case : (ii)

The flower graph $G = f_{n \times 4}$ is given in figure 1.4

$$S_1 = \{v_{i \ 1} / i = 1, 2, \dots, n\}$$
 and

$$S_2 = \{v_{i,j} / i = 1, 2, ..., n; j = 2, 3, ..., 6\}$$

Let $D = \{(v_{i_2}), (v_{j_5})/i = 1, 2, ..., n\}$ is the required minimum dominating set of *G* and $D' = \{(v_{i_1}), (v_{j_4})/i = 1, 2, ..., n; j = 1, 2, ..., n\}$ is the required minimum inverse dominating set of *G*.

Thus the cardinality of D and D' is 2n.

Hence, $\gamma(G) = \gamma'(G) = 2n$

The flower graph $G = f_{n \times 10}$ is given in figure 1.6

Figure 1.6

Now the vertices of G can be partitioned in to two sets S_1 and S_2 such that

$$S_1 = \{v_{i \ 1} / i = 1, 2, ..., n\}$$
 and

$$S_2 = \{ v_{i,j} / i = 1, 2, ..., n; j = 2, 3, ..., 9 \}$$

Let $D = \{v_{ij} | i = 1, 2, ..., n; j = 1, 4, 7\}$ is the required minimum dominating set of *G* and $D' = \{v_{ij} | i = 1, 2, ..., n; j = 2, 5, 8\}$ is a required minimum inverse dominating set of *G*.

Thus the cardinality of D and D' is 3n.

Hence
$$\gamma(G) = \gamma'(G) = 3n$$

Thus, $\gamma(f_{n \times r}) = \{(k-1)n + n\}$

$$\gamma'(f_{n \times r}) = \{(k-1)n + n \text{ where } r = 3k+1, r \le 11\}$$
(2)

Put k = 1 in eqn (2), we get, $\gamma(G) = \gamma'(G) = n$

Put k = 2 in eqn (2), we get, $\gamma(G) = \gamma'(G) = 2n$

Put k = 3 in eqn (2), we get, $\gamma(G) = \gamma'(G) = 3n$

Therefore, $\gamma(f_{n \times r}) = \{(k-1)n + n\}$

$$\gamma'(f_{n \times r}) = \{(k-1)n + n \text{ where } r = 3k + 1, r \le 11\}$$

Case : (iii)

The flower graph $G = f_{n \times 5}$ is given in figure 1.7

Now the vertices of G can be partitioned in to two sets S_1 and S_2 such that

$$S_1 = \{v_{i \ 1} / i = 1, 2, ..., n\}$$
 and
 $S_2 = \{v_{i \ i} / i = 1, 2, ..., n; i = 2, 4\}$

Let $D = \{(v_{\overline{3l+2} \ 1}), (v_{\overline{3l+2} \ 4}), (v_{3j \ 3})/ i = 0, 1, 2, ..., n; j = 1, 2, ..., n\}$ is the required

minimum dominating set of G and

 $D' = \{(v_{3i+1 \ 1}), (v_{3k+2 \ 3}), (v_{3d \ 2})/i = 0, 1, 2, ..., n; d = 1, 2, ..., n; and j = 1, 4\}$ is a required minimum inverse dominating set of *G*.

Thus the cardinality of *D* and *D'* is $n + \left\lceil \frac{n+1}{3} \right\rceil$

Hence
$$\gamma(G) = \gamma'(G) = n + \left\lceil \frac{n+1}{3} \right\rceil$$

The flower graph $G = f_{n \times 8}$ is given in figure 1.8

Now the vertices of G can be partitioned in to two sets S_1 and S_2 such that

$$S_1 = \{v_{i \ 1} / i = 1, 2, ..., n\}$$
 and
 $S_2 = \{v_{i \ j} / i = 1, 2, ..., n; j = 2, 3, ..., 7\}$

Let
$$D = \{ (v_{\overline{3i+2} j}), (v_{\overline{3i+1} k}), (v_{3d p})/i = 0, 1, 2, ..., n; j = 1, 4, 7; k = 2, 5; p = 3, 6; d = 1, 2, ..., n \}$$

is the required minimum dominating set of G and

 $D' = \{ (v_{3i+1 \ j}), (v_{3i+2 \ k}), (v_{3 \ 3i+2}) / i = 0, 1, 2, ..., n; j = 1, 4, 7; k = 3, 6 \}$ is a required minimum inverse dominating set of *G*.

The cardinality of *D* and *D'* is $2n + \left\lfloor \frac{n+1}{3} \right\rfloor$

Therefore,
$$\gamma(G) = \gamma'(G) = 2n + \left[\frac{n+1}{3}\right]$$

The flower graph $G = f_{n \times 11}$ is given in figure 1.9

Now the vertices of G can be partitioned in to two sets S_1 and S_2 such that

$$S_1 = \{v_{i \ 1} / i = 1, 2, ..., n\}$$
 and
 $S_2 = \{v_{i \ j} / i = 1, 2, ..., n; j = 2, 3, ..., 7\}$

Let
$$D = \{ (v_{\overline{3l+2} \ j}), (v_{\overline{3l+1} \ k}), (v_{3d \ P})/i = 0, 1, 2, ..., n; \ j = 1, 4, 7; \ k = 2, 5; \ p = 3, 6; \ d = 1, 2, ..., n \}$$

is the required minimum dominating set of G and

 $D' = \{ (v_{3i+1 j}), (v_{3i+2 k}), (v_{3 3i+2}) / i = 0, 1, 2, ..., n; j = 1, 4, 7; k = 3, 6 \}$ is a required minimum inverse dominating set of *G*.

The cardinality of *D* and *D'* is $2n + \left\lfloor \frac{n+1}{3} \right\rfloor$

Therefore,
$$\gamma(G) = \gamma'(G) = 2n + \left[\frac{n+1}{3}\right]$$

The flower graph $G = f_{n \times 11}$ is given in figure 1.9

Now the vertices of G can be partitioned in to two sets S_1 and S_2 such that

$$S_1 = \{v_{i \ 1} / i = 1, 2, ..., n\}$$
 and
 $S_2 = \{v_{i \ j} / i = 1, 2, ..., n; j = 2, 3, ..., 10\}$

Let
$$D = \{ (v_{\overline{3l+1} j}), (v_{\overline{3l+2} k}), (v_{3d P})/i = 0, 1, 2, ..., n; j = 1, 4, 7, 10; k = 3, 6, 9; d = 1, 2, ..., n; j = 1, 2, ..$$

p = 2,5,8 is the required minimum dominating set of G and

 $D' = \{ (v_{3l+1 \ j}), (v_{3l+2 \ k}), (v_{3d \ p}) / i = 0, 1, 2, ..., n; j = 2, 5, 8; k = 1, 4, 7; d = 1, 2, ..., n; p = 3, 6, 9 \}$ is a required minimum inverse dominating set of *G*.

The cardinality of *D* and *D'* is $3n + \left\lfloor \frac{n+1}{3} \right\rfloor$

Hence
$$\gamma(G) = \gamma'(G) = 3n + \left\lceil \frac{n+1}{3} \right\rceil$$

Thus $\gamma(f_{n \times r}) = \left\{ (k-1)n + n + \left\lceil \frac{n+1}{3} \right\rceil \right\}$

$$\gamma'(f_{n \times r}) = \left\{ (k-1)n + n + \left[\frac{n+1}{3}\right] \right\}$$
 where $r = 3k + 2, r \le 11 \right\}$ (3)

Put k = 1 in eqn (3), we get, $\gamma(G) = \gamma'(G) = n + \left\lfloor \frac{n+1}{3} \right\rfloor$

Put k = 2 in eqn (3), we get, $\gamma(G) = \gamma'(G) = 2n + \left\lfloor \frac{n+1}{3} \right\rfloor$

Put k = 3 in eqn (3), we get, $\gamma(G) = \gamma'(G) = 3n + \left\lfloor \frac{n+1}{3} \right\rfloor$

Therefore, $\gamma(f_{n \times r}) = \left\{ (k-1)n + n + \left\lceil \frac{n+1}{3} \right\rceil \right\}$

$$\gamma'(f_{n \times r}) = \left\{ (k-1)n + n + \left\lceil \frac{n+1}{3} \right\rceil \right\}$$
 where $r = 3k + 2, r \le 11 \right\}$

compaining eqn (1), (2) and (3) we get,

$$\gamma(f_{n \times r}) = \{(k-1)n + \gamma(f_{n \times \overline{3k+\iota}})\}$$

$$\gamma'(f_{n\times r}) = \{(k-1)n + \gamma'(f_{n\times \overline{3k+\iota}})\}$$

where r = 3k + i, i = 0,1,2 for case (i), (ii) and (iii) respectively and k = 1,2,3

References:

- Alkhani.S and Peng.Y.H, Dominating sets and Domination polynomials of cycles. Global Journal of pure and applied Mathematics Vol.4, No.2,2008.
- Bollobas.S, Modern graph theory graduate texts in Mathematics 184, Springer, 1998.
- 3. Bondy J.Aand Murty U.S.R, graph theory with Application.
- Eunice Mphako-Banda, Some polynomials of flower graphs, International Mathematic problem 2, 2007, no.51, 2511-2518.
- 5. Harary Frank, Graph Theory Reading, M.Addison Wesley (1994).
- Haynes.T.W, Hedetniemi.S.T, Slater.P.J, Fundamentals of domination in graphs, Marcel Dekker, New York, 1998.
- 7. T.Tamizh Chelvam, T.Asir and G.S. Grace prema, Inverse Domination in graphs.