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The domination and inverse domination parameters have been already studied, in this paper our interest is to evaluate the 
domination and inverse domination parameters for the flower graph f_(n×r). Also we have proved the inverse domination 
parameter for the flower graph f_ n×r of order n r-1 is γ’ fn×r ={(k-1)n+γ’ (fn×(3k+i) )k=1,2,3;i=0,1,2 and r≤11} where γ’ (f_n×r 
be the inverse domination number of f_(n×r).
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1. Introduction: 

Let G = (V, E) be a flower graph of order n(r − 1). A subset 𝐷𝐷 of 𝑉𝑉 is called dominating 

set if for every vertex 𝑣𝑣 ∈  𝑉𝑉 − 𝐷𝐷, there exists a vertex 𝑢𝑢 in such that 𝑢𝑢 is adjacent to 𝑣𝑣. The 

smallest cardinality of a minimum dominating set in 𝐺𝐺 is called the domination number of 𝐺𝐺 

and is denoted by 𝛾𝛾(𝐺𝐺). Any dominating set with 𝛾𝛾(𝐺𝐺) vertices is called 𝛾𝛾 −set of 𝐺𝐺.A 

dominating set 𝐷𝐷′ contained in 𝑉𝑉 − 𝐷𝐷 is called an inverse dominating set of 𝐺𝐺 with respect to 

𝐷𝐷.The smallest cardinality among all minimum dominating sets, in 𝑉𝑉 − 𝐷𝐷 is called the inverse 

dominating set of 𝐺𝐺 which has 𝛾𝛾′(𝐺𝐺) vertices is called 𝑎𝑎 𝛾𝛾′ −set of 𝐺𝐺. 

Definition: 1.1 

 If 𝑒𝑒 = {𝑢𝑢, 𝑣𝑣} is an edge of 𝐺𝐺, written as 𝑒𝑒 = 𝑢𝑢𝑣𝑣, we say that 𝑒𝑒 joins the vertices 𝑢𝑢 and 

𝑣𝑣. Also, we say that 𝑢𝑢 and 𝑣𝑣 are adjacent vertices, 𝑢𝑢 and 𝑣𝑣 are incident with 𝑒𝑒.  

Definition: 1.2 

 A walk of a graph 𝐺𝐺 is an alternating sequence of points and lines 

𝑣𝑣0, 𝑥𝑥1, 𝑣𝑣1, 𝑥𝑥2, 𝑣𝑣2, … , 𝑣𝑣𝑛𝑛−1, 𝑥𝑥𝑛𝑛, 𝑣𝑣𝑛𝑛 beginning and ending with points such that each line 𝑥𝑥𝑖𝑖 is 

incident with 𝑣𝑣𝑖𝑖−1 and 𝑣𝑣𝑖𝑖.  

A walk in which all the vertices are distinct is called a Path. A path of 𝑛𝑛 vertices is 

denoted by 𝑃𝑃𝑛𝑛. A closed path is called a Cycle. Generally a cycle with 𝑛𝑛 vertices is denoted by 

𝐶𝐶𝑛𝑛. 

Definition: 1.3 

 Let 𝐺𝐺 = (𝑉𝑉, 𝐸𝐸) be a graph. A subset 𝐷𝐷 of 𝑉𝑉 is called dominating set if every vertex in 

𝑉𝑉 − 𝐷𝐷 is adjacent to a vertex in 𝐷𝐷. The minimum cardinality of a dominating set in 𝐺𝐺 is called 

the domination number of 𝐺𝐺 and is denoted by 𝛾𝛾(𝐺𝐺).  

 



Volume : 5 | Issue : 9 | September 2016 ISSN - 2250-1991 | IF : 5.215 | IC Value : 77.65

247  | PARIPEX - INDIAN JOURNAL OF RESEARCH

2 
 

Definition: 1.4 

 Let 𝐺𝐺 = (𝑉𝑉, 𝐸𝐸) be a graph. Let 𝐷𝐷 be a minimum dominating set of 𝐺𝐺. If 𝑉𝑉 − 𝐷𝐷 contains 

a dominating set 𝐷𝐷′ is called an inverse dominating set with respect to 𝐷𝐷 the minimum 

cardinality of all inverse dominating sets of a graph 𝐺𝐺 is called the inverse domination number 

of 𝐺𝐺 and it is denoted by 𝛾𝛾′(𝐺𝐺). 

Definition: 1.5 

The degree of vertex 𝑣𝑣 in a graph 𝐺𝐺 is the number of edges of 𝐺𝐺 incident with 𝑣𝑣 and is 

denoted by 𝑑𝑑𝐺𝐺(𝑣𝑣) or deg 𝑣𝑣. (or) simply 𝑑𝑑(𝑣𝑣). 

Definition: 1.6  

A Graph 𝐺𝐺 is called a 𝑛𝑛 × 𝑟𝑟 flower graph if it has 𝑚𝑚 vertices which form a 𝑛𝑛-cycle and 

𝑟𝑟 sets of 𝑛𝑛 − 2 vertices which form 𝑟𝑟-cycle around them 𝑛𝑛-cycle so that each 𝑟𝑟-cycle uniquely 

intersects with the 𝑛𝑛-cycle on a single edge. This graph is denoted by 𝑓𝑓𝑛𝑛×𝑟𝑟. It is clear that 𝑓𝑓𝑛𝑛×𝑟𝑟 

has 𝑛𝑛(𝑟𝑟 − 1) vertices and 𝑛𝑛𝑟𝑟 edges. The 𝑟𝑟 cycles are called the petals and the 𝑛𝑛 cycles is called 

the centre of 𝑓𝑓𝑛𝑛×𝑟𝑟. Then 𝑛𝑛 vertices which form the centre are all of degree 4 and all the other 

vertices have degree 2. 

Theorem: 1.7 

Let 𝐺𝐺 = 𝑓𝑓𝑛𝑛×𝑟𝑟 then, 

  𝛾𝛾′ (𝑓𝑓𝑛𝑛×𝑟𝑟) = {(𝑘𝑘 − 1)𝑛𝑛 + 𝛾𝛾′(𝑓𝑓𝑛𝑛×3𝑘𝑘+𝑖𝑖̅̅ ̅̅ ̅̅ ̅),      𝑘𝑘 = 1,2,3;  𝑖𝑖 = 0,1,2   where, 𝑟𝑟 ≤ 11} 

Proof: 

Let 𝐺𝐺 = 𝑓𝑓𝑛𝑛×𝑟𝑟 be a flower graph of order 𝑛𝑛(𝑟𝑟 − 1) and  𝑟𝑟 = 3𝑘𝑘 + 𝑖𝑖 

Case (i) 
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The flower graph 𝐺𝐺 = 𝑓𝑓𝑛𝑛×3 is given in figure 1.1 

 

 

 

 

 

 

 

 

                                                        Figure 1.1 

Now the vertices of 𝐺𝐺 can be partitioned in to two sets 𝑆𝑆1 and 𝑆𝑆2 such that  

  𝑆𝑆1 = {𝑣𝑣𝑖𝑖  1/   𝑖𝑖 = 1,2, … , 𝑛𝑛} and     

  𝑆𝑆2 = {𝑣𝑣𝑖𝑖  2/   𝑖𝑖 = 1,2, … , 𝑛𝑛} 

 Let 𝐷𝐷 = {𝑣𝑣2𝑖𝑖+1̅̅ ̅̅ ̅̅ ̅  1/ 𝑖𝑖 = 0,1,2, … , ⌈𝑛𝑛
2⌉}is the required minimum dominating set of 𝐺𝐺 and  

 𝐷𝐷′ = {𝑣𝑣2𝑖𝑖+2̅̅ ̅̅ ̅̅ ̅  1/ 𝑖𝑖 = 0,1,2, … , ⌈𝑛𝑛
2⌉} is the required inverse dominating set of 𝐺𝐺. 

Thus the cardinality of 𝐷𝐷 and 𝐷𝐷′ is ⌈𝑛𝑛
2⌉. 

Hence  𝛾𝛾(𝐺𝐺) = 𝛾𝛾′(𝐺𝐺) = ⌈𝑛𝑛
2⌉ 
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The flower graph 𝐺𝐺 = 𝑓𝑓𝑛𝑛×6 is given in figure 1.2 

 

 

 

 

 

 

 

 

 

Figure 1.2 

The vertices of 𝐺𝐺 can be partitioned in to two sets 𝑆𝑆1 and 𝑆𝑆2 such that  

𝑆𝑆1 = {𝑣𝑣𝑖𝑖  1/   𝑖𝑖 = 1,2, … , 𝑛𝑛}and 

 𝑆𝑆2 = {𝑣𝑣𝑖𝑖  𝑗𝑗/   𝑖𝑖 = 1,2, … , 𝑛𝑛; 𝑗𝑗 = 2,3, … ,5} 

Let = {(𝑣𝑣2𝑖𝑖+1̅̅ ̅̅ ̅̅ ̅  1), (𝑣𝑣2𝑗𝑗+1̅̅ ̅̅ ̅̅ ̅  4), (𝑣𝑣2𝑘𝑘  3)/  𝑖𝑖, 𝑗𝑗 = 0,1,2, … , ⌈𝑛𝑛
2⌉ ; 𝑘𝑘 = 1,2, … , ⌈𝑛𝑛

2⌉ }  is the required 

minimum dominating set of 𝐺𝐺    and 

𝐷𝐷′ = {(𝑣𝑣2𝑖𝑖  1), (𝑣𝑣2𝑗𝑗  4), (𝑣𝑣2𝑘𝑘+1̅̅ ̅̅ ̅̅ ̅̅   3)/ 𝑖𝑖, 𝑗𝑗 = 1,2, … , ⌈𝑛𝑛
2⌉ ; 𝑘𝑘 = 0,1,2, … , ⌈𝑛𝑛

2⌉ } is the required 

minimum inverse dominating set of 𝐺𝐺. 
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Therefore, the cardinality of 𝐷𝐷 and 𝐷𝐷′ is   𝑛𝑛 + ⌈𝑛𝑛
2⌉. 

Hence,   𝛾𝛾(𝐺𝐺) = 𝛾𝛾′(𝐺𝐺) = 𝑛𝑛 + ⌈𝑛𝑛
2⌉ 

The flower graph 𝐺𝐺 = 𝑓𝑓𝑛𝑛×9 is given in figure 1.3 

 

 

 

 

 

 

 

Figure 1.3 

Now the vertex of 𝐺𝐺 can be partitioned in to two sets 𝑆𝑆1 and 𝑆𝑆2 such that  

𝑆𝑆1 = {𝑣𝑣𝑖𝑖  1/   𝑖𝑖 = 1,2, … , 𝑛𝑛}and 

 𝑆𝑆2 = {𝑣𝑣𝑖𝑖  𝑗𝑗/   𝑖𝑖 = 1,2, … , 𝑛𝑛; 𝑗𝑗 = 2,3, … ,8} 

Let 𝐷𝐷 = {(𝑣𝑣2𝑖𝑖+1̅̅ ̅̅ ̅̅ ̅  1), (𝑣𝑣2𝑗𝑗+1̅̅ ̅̅ ̅̅ ̅  4), (𝑣𝑣2𝑘𝑘+1̅̅ ̅̅ ̅̅ ̅̅   7)(𝑣𝑣2𝑑𝑑  3)(𝑣𝑣2𝑑𝑑  6)/  𝑖𝑖, 𝑗𝑗, 𝑘𝑘 = 0,1,2, … , ⌈𝑛𝑛
2⌉ ; 𝑑𝑑 = 1,2, … , ⌈𝑛𝑛

2⌉ } 

   is a required minimum dominating set of 𝐺𝐺     and 

𝐷𝐷′ = {(𝑣𝑣2𝑖𝑖  1), (𝑣𝑣2𝑗𝑗  4), (𝑣𝑣2𝑘𝑘  7), (𝑉𝑉2𝑑𝑑+1̅̅ ̅̅ ̅̅ ̅̅   3), (𝑉𝑉3𝑑𝑑+1̅̅ ̅̅ ̅̅ ̅̅   6)/𝑖𝑖, 𝑗𝑗, 𝑘𝑘 = 1,2, … , ⌈𝑛𝑛

2
⌉ ; 𝑑𝑑 = 0,1,2, … , ⌈𝑛𝑛

2
⌉ } is the 

required minimum inverse dominating set of 𝐺𝐺. 
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Thus the cardinality of 𝐷𝐷 and 𝐷𝐷′ is 2𝑛𝑛 + ⌈𝑛𝑛
2⌉. 

Hence     𝛾𝛾(𝐺𝐺) = 𝛾𝛾′(𝐺𝐺) = 2𝑛𝑛 + ⌈𝑛𝑛
2⌉  

Thus, 𝛾𝛾(𝑓𝑓𝑛𝑛×𝑟𝑟) = {(𝑘𝑘 − 1)𝑛𝑛 + ⌈𝑛𝑛
2⌉}  

         𝛾𝛾′(𝑓𝑓𝑛𝑛×𝑟𝑟) = {(𝑘𝑘 − 1)𝑛𝑛 + ⌈𝑛𝑛
2⌉ , where 𝑟𝑟 = 3𝑘𝑘}                                                   …… (1) 

Put 𝑘𝑘 = 1 in eqn (1) we get, 𝛾𝛾(𝐺𝐺) = 𝛾𝛾′(𝐺𝐺) = ⌈𝑛𝑛
2⌉  

Put 𝑘𝑘 = 2 in eqn (1) we get,  𝛾𝛾(𝐺𝐺) = 𝛾𝛾′(𝐺𝐺) = 𝑛𝑛 + ⌈𝑛𝑛
2⌉  

Put 𝑘𝑘 = 3 in eqn (1) we get,  𝛾𝛾(𝐺𝐺) = 𝛾𝛾′(𝐺𝐺) = 2𝑛𝑛 + ⌈𝑛𝑛
2⌉  

Therefore, 𝛾𝛾(𝑓𝑓𝑛𝑛×𝑟𝑟) = {(𝑘𝑘 − 1)𝑛𝑛 + ⌈𝑛𝑛
2⌉}   

⟹ 𝛾𝛾′(𝑓𝑓𝑛𝑛×𝑟𝑟) = {(𝑘𝑘 − 1)𝑛𝑛 + ⌈𝑛𝑛
2⌉  where 𝑟𝑟 = 3𝑘𝑘, 𝑟𝑟 ≤ 11} 

Case : (ii) 

The flower graph 𝐺𝐺 = 𝑓𝑓𝑛𝑛×4 is given in figure 1.4 
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𝑆𝑆1 = {𝑣𝑣𝑖𝑖  1/   𝑖𝑖 = 1,2, … , 𝑛𝑛}and 

 𝑆𝑆2 = {𝑣𝑣𝑖𝑖  𝑗𝑗/   𝑖𝑖 = 1,2, … , 𝑛𝑛; 𝑗𝑗 = 2,3, … ,6} 

Let 𝐷𝐷 = {(𝑣𝑣𝑖𝑖  2), (𝑣𝑣𝑗𝑗  5)/ 𝑖𝑖 = 1,2, … , 𝑛𝑛}is the required minimum dominating set of 𝐺𝐺 and 

𝐷𝐷′ = {(𝑣𝑣𝑖𝑖 1), (𝑣𝑣𝑗𝑗 4)/ 𝑖𝑖 = 1,2, … , 𝑛𝑛; 𝑗𝑗 = 1,2, … , 𝑛𝑛}is the required minimum inverse dominating set 

of 𝐺𝐺. 

Thus the cardinality of 𝐷𝐷 and 𝐷𝐷′ is 2𝑛𝑛. 

Hence ,      𝛾𝛾(𝐺𝐺) = 𝛾𝛾′(𝐺𝐺) = 2𝑛𝑛 

The flower graph 𝐺𝐺 = 𝑓𝑓𝑛𝑛×10  is given in figure 1.6 

 

 

 

 

 

 

 

Figure 1.6 

Now the vertices of 𝐺𝐺 can be partitioned in to two sets 𝑆𝑆1 and 𝑆𝑆2 such that  

𝑆𝑆1 = {𝑣𝑣𝑖𝑖  1/   𝑖𝑖 = 1,2, … , 𝑛𝑛}and 

 𝑆𝑆2 = {𝑣𝑣𝑖𝑖  𝑗𝑗/   𝑖𝑖 = 1,2, … , 𝑛𝑛; 𝑗𝑗 = 2,3, … ,9} 
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Let 𝐷𝐷 = {𝑣𝑣𝑖𝑖 𝑗𝑗/ 𝑖𝑖 = 1,2, … , 𝑛𝑛;  𝑗𝑗 = 1,4,7}is the required minimum dominating set of 𝐺𝐺 and 

𝐷𝐷′ = {𝑣𝑣𝑖𝑖 𝑗𝑗/ 𝑖𝑖 = 1,2, … , 𝑛𝑛; 𝑗𝑗 = 2,5,8}is  a required minimum inverse dominating set of 𝐺𝐺. 

Thus the cardinality of 𝐷𝐷 and 𝐷𝐷′ is 3𝑛𝑛. 

Hence    𝛾𝛾(𝐺𝐺) = 𝛾𝛾′(𝐺𝐺) = 3𝑛𝑛 

Thus, 𝛾𝛾(𝑓𝑓𝑛𝑛×𝑟𝑟) = {(𝑘𝑘 − 1)𝑛𝑛 + 𝑛𝑛}   

𝛾𝛾′(𝑓𝑓𝑛𝑛×𝑟𝑟) = {(𝑘𝑘 − 1)𝑛𝑛 + 𝑛𝑛  where 𝑟𝑟 = 3𝑘𝑘 + 1, 𝑟𝑟 ≤ 11}                          …… (2) 

Put 𝑘𝑘 = 1 in eqn (2), we get,  𝛾𝛾(𝐺𝐺) = 𝛾𝛾′(𝐺𝐺) = 𝑛𝑛 

Put 𝑘𝑘 = 2 in eqn (2), we get, 𝛾𝛾(𝐺𝐺) = 𝛾𝛾′(𝐺𝐺) = 2𝑛𝑛 

Put 𝑘𝑘 = 3 in eqn (2), we get, 𝛾𝛾(𝐺𝐺) = 𝛾𝛾′(𝐺𝐺) = 3𝑛𝑛 

Therefore, 𝛾𝛾(𝑓𝑓𝑛𝑛×𝑟𝑟) = {(𝑘𝑘 − 1)𝑛𝑛 + 𝑛𝑛   

    𝛾𝛾′(𝑓𝑓𝑛𝑛×𝑟𝑟) = {(𝑘𝑘 − 1)𝑛𝑛 + 𝑛𝑛  where  𝑟𝑟 = 3𝑘𝑘 + 1, 𝑟𝑟 ≤ 11}            

Case : (iii) 

The flower graph 𝐺𝐺 = 𝑓𝑓𝑛𝑛×5 is given in figure 1.7 
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Figure 1.7 

Now the vertices of 𝐺𝐺 can be partitioned in to two sets 𝑆𝑆1 and 𝑆𝑆2 such that  

𝑆𝑆1 = {𝑣𝑣𝑖𝑖  1/   𝑖𝑖 = 1,2, … , 𝑛𝑛}   and 

 𝑆𝑆2 = {𝑣𝑣𝑖𝑖  𝑗𝑗/   𝑖𝑖 = 1,2, … , 𝑛𝑛; 𝑗𝑗 = 2,4} 

        Let 𝐷𝐷 = {(𝑣𝑣3𝑖𝑖+2̅̅ ̅̅ ̅̅ ̅  1), (𝑣𝑣3𝑖𝑖+2̅̅ ̅̅ ̅̅ ̅  4), (𝑣𝑣3𝑗𝑗  3)/ 𝑖𝑖 = 0,1,2, … , 𝑛𝑛;  𝑗𝑗 = 1,2, … , 𝑛𝑛}is the required 

minimum dominating set of 𝐺𝐺 and 

 𝐷𝐷′ = {(𝑣𝑣3𝑖𝑖+1̅̅ ̅̅ ̅̅ ̅  1), (𝑣𝑣3𝑘𝑘+2̅̅ ̅̅ ̅̅ ̅̅   3), (𝑣𝑣3𝑑𝑑  2)/  𝑖𝑖 = 0,1,2, … , 𝑛𝑛; 𝑑𝑑 = 1,2, … , 𝑛𝑛; and 𝑗𝑗 = 1,4}is  a required 

minimum inverse dominating set of 𝐺𝐺. 

Thus the cardinality of 𝐷𝐷 and 𝐷𝐷′ is 𝑛𝑛 + ⌈𝑛𝑛+1
3 ⌉ 

Hence    𝛾𝛾(𝐺𝐺) = 𝛾𝛾′(𝐺𝐺) = 𝑛𝑛 + ⌈𝑛𝑛+1
3 ⌉ 

 The flower graph 𝐺𝐺 = 𝑓𝑓𝑛𝑛×8 is given in figure 1.8 
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Figure 1.8 

Now the vertices of 𝐺𝐺 can be partitioned in to two sets 𝑆𝑆1 and 𝑆𝑆2 such that  

𝑆𝑆1 = {𝑣𝑣𝑖𝑖  1/   𝑖𝑖 = 1,2, … , 𝑛𝑛}    and 

 𝑆𝑆2 = {𝑣𝑣𝑖𝑖  𝑗𝑗/   𝑖𝑖 = 1,2, … , 𝑛𝑛;   𝑗𝑗 = 2,3, … ,7} 

    Let 𝐷𝐷 = {(𝑣𝑣3𝑖𝑖+2̅̅ ̅̅ ̅̅ ̅  𝑗𝑗), (𝑣𝑣3𝑖𝑖+1̅̅ ̅̅ ̅̅ ̅  𝑘𝑘), (𝑣𝑣3𝑑𝑑  𝑃𝑃)/𝑖𝑖 = 0,1,2, … , 𝑛𝑛;  𝑗𝑗 = 1,4,7; 𝑘𝑘 = 2,5; 𝑝𝑝 = 3,6; 𝑑𝑑 = 1,2, … , 𝑛𝑛} 

is the required minimum dominating set of 𝐺𝐺 and  

𝐷𝐷′ = {(𝑣𝑣3𝑖𝑖+1̅̅ ̅̅ ̅̅ ̅  𝑗𝑗), (𝑣𝑣3𝑖𝑖+2̅̅ ̅̅ ̅̅ ̅  𝑘𝑘), (𝑣𝑣3  3𝑖𝑖+2̅̅ ̅̅ ̅̅ ̅)/  𝑖𝑖 = 0,1,2, … , 𝑛𝑛; 𝑗𝑗 = 1,4,7; 𝑘𝑘 = 3,6} is  a required minimum 

inverse dominating set of 𝐺𝐺. 

The cardinality of 𝐷𝐷 and 𝐷𝐷′ is 2𝑛𝑛 + ⌈𝑛𝑛+1
3 ⌉ 

Therefore, 𝛾𝛾(𝐺𝐺) = 𝛾𝛾′(𝐺𝐺) = 2𝑛𝑛 + ⌈𝑛𝑛+1
3 ⌉ 

The flower graph 𝐺𝐺 = 𝑓𝑓𝑛𝑛×11 is given in figure 1.9 
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Figure 1.8 

Now the vertices of 𝐺𝐺 can be partitioned in to two sets 𝑆𝑆1 and 𝑆𝑆2 such that  

𝑆𝑆1 = {𝑣𝑣𝑖𝑖  1/   𝑖𝑖 = 1,2, … , 𝑛𝑛}    and 

 𝑆𝑆2 = {𝑣𝑣𝑖𝑖  𝑗𝑗/   𝑖𝑖 = 1,2, … , 𝑛𝑛;   𝑗𝑗 = 2,3, … ,7} 

    Let 𝐷𝐷 = {(𝑣𝑣3𝑖𝑖+2̅̅ ̅̅ ̅̅ ̅  𝑗𝑗), (𝑣𝑣3𝑖𝑖+1̅̅ ̅̅ ̅̅ ̅  𝑘𝑘), (𝑣𝑣3𝑑𝑑  𝑃𝑃)/𝑖𝑖 = 0,1,2, … , 𝑛𝑛;  𝑗𝑗 = 1,4,7; 𝑘𝑘 = 2,5; 𝑝𝑝 = 3,6; 𝑑𝑑 = 1,2, … , 𝑛𝑛} 

is the required minimum dominating set of 𝐺𝐺 and  

𝐷𝐷′ = {(𝑣𝑣3𝑖𝑖+1̅̅ ̅̅ ̅̅ ̅  𝑗𝑗), (𝑣𝑣3𝑖𝑖+2̅̅ ̅̅ ̅̅ ̅  𝑘𝑘), (𝑣𝑣3  3𝑖𝑖+2̅̅ ̅̅ ̅̅ ̅)/  𝑖𝑖 = 0,1,2, … , 𝑛𝑛; 𝑗𝑗 = 1,4,7; 𝑘𝑘 = 3,6} is  a required minimum 

inverse dominating set of 𝐺𝐺. 

The cardinality of 𝐷𝐷 and 𝐷𝐷′ is 2𝑛𝑛 + ⌈𝑛𝑛+1
3 ⌉ 

Therefore, 𝛾𝛾(𝐺𝐺) = 𝛾𝛾′(𝐺𝐺) = 2𝑛𝑛 + ⌈𝑛𝑛+1
3 ⌉ 

The flower graph 𝐺𝐺 = 𝑓𝑓𝑛𝑛×11 is given in figure 1.9 
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Figure 1.9 

Now the vertices of 𝐺𝐺 can be partitioned in to two sets 𝑆𝑆1 and 𝑆𝑆2 such that  

𝑆𝑆1 = {𝑣𝑣𝑖𝑖  1/   𝑖𝑖 = 1,2, … , 𝑛𝑛}     and 

 𝑆𝑆2 = {𝑣𝑣𝑖𝑖  𝑗𝑗/   𝑖𝑖 = 1,2, … , 𝑛𝑛;  𝑗𝑗 = 2,3, … ,10} 

         Let 𝐷𝐷 = {(𝑣𝑣3𝑖𝑖+1̅̅ ̅̅ ̅̅ ̅  𝑗𝑗), (𝑣𝑣3𝑖𝑖+2̅̅ ̅̅ ̅̅ ̅  𝑘𝑘), (𝑣𝑣3𝑑𝑑  𝑃𝑃)/𝑖𝑖 = 0,1,2, … , 𝑛𝑛;  𝑗𝑗 = 1,4,7,10; 𝑘𝑘 = 3,6,9; 𝑑𝑑 = 1,2, … , 𝑛𝑛; 

𝑝𝑝 = 2,5,8}  is the required minimum dominating set of 𝐺𝐺 and  

𝐷𝐷′ = {(𝑣𝑣3𝑖𝑖+1̅̅ ̅̅ ̅̅ ̅  𝑗𝑗), (𝑣𝑣3𝑖𝑖+2̅̅ ̅̅ ̅̅ ̅  𝑘𝑘), (𝑣𝑣3𝑑𝑑 𝑝𝑝)/  𝑖𝑖 = 0,1,2, … , 𝑛𝑛; 𝑗𝑗 = 2,5,8; 𝑘𝑘 = 1,4,7; 𝑑𝑑 = 1,2, … , 𝑛𝑛; 𝑝𝑝 = 3,6,9} is  

a required minimum inverse dominating set of 𝐺𝐺. 

The cardinality of 𝐷𝐷 and 𝐷𝐷′ is 3𝑛𝑛 + ⌈𝑛𝑛+1
3 ⌉ 

Hence 𝛾𝛾(𝐺𝐺) = 𝛾𝛾′(𝐺𝐺) = 3𝑛𝑛 + ⌈𝑛𝑛+1
3 ⌉ 

Thus 𝛾𝛾(𝑓𝑓𝑛𝑛×𝑟𝑟) = {(𝑘𝑘 − 1)𝑛𝑛 + 𝑛𝑛 + ⌈𝑛𝑛+1
3 ⌉}   

        𝛾𝛾′(𝑓𝑓𝑛𝑛×𝑟𝑟) = {(𝑘𝑘 − 1)𝑛𝑛 + 𝑛𝑛 + ⌈𝑛𝑛+1
3 ⌉}  where 𝑟𝑟 = 3𝑘𝑘 + 2, 𝑟𝑟 ≤ 11}                  ……(3) 

Put 𝑘𝑘 = 1 in eqn (3),we get,  𝛾𝛾(𝐺𝐺) = 𝛾𝛾′(𝐺𝐺) = 𝑛𝑛 + ⌈𝑛𝑛+1
3 ⌉ 

Put 𝑘𝑘 = 2 in eqn (3),we get, 𝛾𝛾(𝐺𝐺) = 𝛾𝛾′(𝐺𝐺) = 2𝑛𝑛 + ⌈𝑛𝑛+1
3 ⌉ 

Put 𝑘𝑘 = 3 in eqn (3),we get, 𝛾𝛾(𝐺𝐺) = 𝛾𝛾′(𝐺𝐺) = 3𝑛𝑛 + ⌈𝑛𝑛+1
3 ⌉ 

Therefore, 𝛾𝛾(𝑓𝑓𝑛𝑛×𝑟𝑟) = {(𝑘𝑘 − 1)𝑛𝑛 + 𝑛𝑛 + ⌈𝑛𝑛+1
3 ⌉}   

    𝛾𝛾′(𝑓𝑓𝑛𝑛×𝑟𝑟) = {(𝑘𝑘 − 1)𝑛𝑛 + 𝑛𝑛 + ⌈𝑛𝑛+1
3 ⌉}  where 𝑟𝑟 = 3𝑘𝑘 + 2, 𝑟𝑟 ≤ 11} 
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compaining eqn (1),(2)  and (3) we get, 

𝛾𝛾(𝑓𝑓𝑛𝑛×𝑟𝑟) = {(𝑘𝑘 − 1)𝑛𝑛 + 𝛾𝛾(𝑓𝑓𝑛𝑛×3𝑘𝑘+𝑖𝑖̅̅ ̅̅ ̅̅ ̅)} 

𝛾𝛾′(𝑓𝑓𝑛𝑛×𝑟𝑟) = {(𝑘𝑘 − 1)𝑛𝑛 + 𝛾𝛾′(𝑓𝑓𝑛𝑛×3𝑘𝑘+𝑖𝑖̅̅ ̅̅ ̅̅ ̅)} 

where 𝑟𝑟 = 3𝑘𝑘 + 𝑖𝑖, 𝑖𝑖 = 0,1,2  for case (i), (ii)and (iii)respectively and 𝑘𝑘 = 1,2,3  
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