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INTRODUCTION AND BACKGROUND
Tuberculosis (TB) is caused by a bacterium called Mycobacteri-
um tuberculosis. The bacteria usually attack the lungs, but TB 
bacteria can attack any part of the body such as the kidney, 
spine, and brain. If not treated properly, TB disease can be fa-
tal. Tuberculosis (TB) is one of the most common infections in 
the world. Though India is the second-most populous coun-
try in the world, India has more new TB cases annually than 
any other country. In 2013, out of the estimated global annu-
al incidence of 9.4 million TB cases, 2 million were estimated 
to have occurred in India, thus contributing to a fifth of the 
global burden of TB. The incidence of TB in India is estimat-
ed based on findings of the nationwide annual risk of tuber-
culosis infection (ARTI) study conducted in 2000-2003. The 
prevalence of TB has been estimated at 3.8 million bacillary 
cases for the year 2000, by an expert group of Govt. of India. 
However the recent estimate by WHO gives a Prevalence of 3 
million.

Prevalence is a dimensionless, unit-free value ranging from zero to 
one (zero to 100 , if expressed as a percentage). Depending on the 
context, an investigator might be interested in prevalence of in-
fection, infectious animals or disease.One way to estimate disease 
prevalence is to obtain a random sample from the target popula-
tion, and to test each individual in the sample for the disease. If 
the test used is error free, often referred to as a gold standard test, 
then the number of diseased individuals in the sample is the same 
as the number positive test results, and estimating the prevalence 
is the classical problem of estimating a binomial proportion. Gold 
standard test rarely if ever exist, however, since even a theoretically 
perfect test can be rendered less perfect by human, laboratory or 
other error. Even when they exist, gold standard tests may be diffi-
cult to perform, highly invasive, very costly of time consuming, so 
that alternative tests are often considered. In developing alternative 
tests, their performance must be evaluated. In particular, the sensi-
tivity of a test is the probability that a truly diseased individual will 
correctly register a positive test, whereas the specificity of a test is 
the probability of a negative test in a truly disease-free individual. 
When   the sensitivity and the specificity of a diagnostic test are 
known, many researchers including Rogan and Gladen (1987) and 
Taragin et al. (1993) have proposed the use of a maximum likeli-
hood estimator (MLE) to estimate the prevalence. Walter and Irwig 
(1988)   have given a comprehensive review of methods related 
to this problem. The MLE performs well under most circumstances. 
When the prevalence of the disease is low, however, as for many 
diseases, the MLE is quite often 0, even when the unobserved 
number of truly diseased subjects in the sample may not be 0. For 
example, consider the case where 16 positive results are observed 
in 100 tests. With a perfect test, the obvious point estimate of the 
prevalence is 16%. However, if the specificity of the test is 80%, 
then at least 20 positive tests would be expected, even if the prev-
alence is 0. To correct for this, Lew and Levy (1989) considered a 
Bayesian approach. They proposed the use of the posterior mean 
from a uniform prior distribution as an estimator of disease preva-
lence. The choice of a non-informative prior distribution, however, 

can have a substantial effect on the point estimate of the preva-
lence when the disease is rare. In particular, point estimates arising 
from a uniform prior density may differ from the point estimate 
suggested by other reasonable ‘non-informative’ choice, such as 
the standard Jeffreys prior density (Gleman et al., 1995). In addi-
tion, calculating the posterior mean involves numerical integration 
and can therefore be difficult to calculate quickly. Here we shall 
present a simple adjustment to the MLE that is useful for rare dis-
eases prevalence estimate in the line of Rahne and Joseph(1998) 
and apply it for estimating Prevalence of Tuberculosis, for Jammu 
Division. We also provide formulae to calculate confidence inter-
vals, and we discuss the sample sizes required for these confidence 
intervals to be smaller than a given width.      

Maximum Likelihood estimation
Suppose that the sensitivity and specificity of a diagnostic test 
are known and equal to s<1 and c<1 respectively. Since the 
accuracy of diagnostic tests that have the sum of their sen-
sitivity and specificity below 1 can be improved by revers-
ing what is considered to be a positive test, without loss of 
generality we shall assume that s+c >1. Consider a random 
sample of size n from the population under study, and let p 
denote the probability of testing positive, which include both 
true and false positive results. Denote by X the number of in-
dividuals from the sample who test positively, and let  denote 
the true prevalence of the disease in that population. We have

p = s+ (1-  ) (1-c) 1)                                                                                  

since each positive test either arises as a true positive, with 
probability  or as a false positive, with the probability (1- )(1-
c). Since , s and c all must lie in the interval [0,1], equation 
(1)implies that p must lie in the interval [1-c,s]. One common 
estimator of p is its MLE. As discussed in Rohatgi(1984),

Using equation (1) and the Invariance property of MLEs, the 
MLE of  is

The MLE performs reasonably well for most values of . When  
is small, however, the MLE is quite often 0, even when the un-
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observed number of truly diseased subjects in the sample, Y, is 
not 0. In general P(Y=0) = , whereas 

P(MLE=0)=P(X/n ≤ 1-c),and the later can be much larger than 
the former.

Table 1 illustrates this for various values of   and n, when 
s=0.9 and c=0.8

We use the normal approximation to the binomial distribution 
to calculate        P(X/n). Since

we have

P(MLE=0) ≈ Ф,

where Ф (t) denotes the standard normal cumulative distribu-
tion evaluated at t, and where p is given by equation (1).

Table 1.  Probability of no positive subjects in a sample 
of size n, P(Y=0), verses the probability that the MLE of 
prevalence, θ, is 0.
DISTRICT n P(Y=0) P(MLE=0)
JAMMU 0.001354 1000 0.2579 0.4721
RAJOURI 0.001297 1000 0.2731 0.4721
DODA 0.005552 1000 0.0038 0.3821
POONCH 0.001173 5000 0.0028 0.4443
UDHAM-
PUR 0.001329 5000 0.0013 0.4721

KATHUA 0.007897 5000 0.0004 0.4522
The calculations shown are for the case when the sensitivity is 
0.9 and the specificity is 0.8.

ADJUSTMENT TO THE LIKELIHOOD ESTIMATOR
The numerator of equation (2) is X/n~ (1-c) when 1-c < X/n 
< s, which produces a negative estimate when X/n ≤ 1-c. We 
shall develop an adjusted estimator that will subtract a quan-
tity less than 1-c when X/n ≤ 1-c, resulting in an estimate that 
remains greater than zero even in this case.

Suppose that we have a sample of size n. Let Z be an unob-
served latent data representing the number of truly positive 
subjects out of X positively testing subjects, and let Y be the 
unobserved total number of truly positive subjects in the sam-
ple. See table 2.

By definition, E(X/n) = p, E(Y/n) = , E (Z/Y) = s and E {(X-Z)/ (n-
Y)} = 1-c, so that, for example, the relationship p =  s+ (1-  )
(1-c) is equivalent to

E(X/n) = E(Y/n)E(Z/Y)+{1-E(Y/n)}E{(X-Z)/(n-Y)}                                             
(3)

Let X = x denote the observed number of positive tests in a 
given study. To motivate the definition of an adjusted maxi-
mum likelihood estimator (AMLE) when the     MLE = 0, i.e. 
when x/n ≤ 1-c, assume the equation (3) remains true when 
x is given. Then (x-Z)/(n-Y) would be the point estimate of 
1-c from the sample, but this is not directly observable. We 
suggest the expected value of (x-Z)/(n-Y), given x and n, as an 
estimate of 1-c. When the number of diseased individuals in 
the sample is small with respect to n, (x-Z)/(n-Y) will be ap-

proximately normally distributed with mean 1-c and variance 
c(1-c)/n. Letting 

H = (x-Z)/(n-Y), we then need to calculate E(H|x). 

TABLE 2.Observed and latent data when a diagnostic test 
is given to a sample of n individuals

TEST 
RESULT
+ -

TRUE 
DISEASE + Z Y-Z Y

STATUS - X-Z n-X-Y+Z n-Y
X n-X n

The variable X represents the number of subjects observed to 
test positively, and Y represents the unobserved number of 
truly diseased subjects. The number of correctly identified pos-
itive subjects, Z, is also not observed. 

According to Table 2,

X/n = (Y/n) (Z/Y) + (1-Y/n) (X-Z)/(n-Y),

So that 

(X-Z)/(n-Y) ≤ X/n ≤ Z/Y.

This follows, since we assume that s > 1-c, and p is a convex 
combination of s and 1-c according to equation (1).If we can 
calculate E, the following approximation to the term E, which 
can be used as an estimator of  given data x, can then be de-
rived as

E then approximates E

Substituting these approximation into equation (3) considering 
x as fixed gives

 follows a truncated normal density with mean (1-c) and vari-
ance c(1-c)/n , but with the constraint that H ≤ x/n. A detailed 
derivation of E shows that

An AMLE of  can be defined as:
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The AMLE is equivalent to the MLE given by equation (2) ex-
cept when x/n ≤ 1-c, when the latter produces a point esti-
mate of 0. For example if s = 0.9 and c = 0.8 and 16 posi-
tive results are observed in 100 tests, AMLE = 0.018, whereas 
from equation (2) the MLE is 0. This estimate is easier to cal-
culate than the Bayes posterior mean as suggested by Lew 
and Levy (1989), since we only need a table of standard nor-
mal distribution along with a hand calculator with square root 
and exponential functions.

Below Table 3 summarizes the above example and two addi-
tional published example.

TABLE 3.
Example n x s c AMLE
1 100 16 0.9 0.8 0.018
2 773 279 0.55 0.63 0.054
3 96 8 0.89 0.74 0.134
4 545886 4974 0.9 0.8 0.286
 
A sample size of n subjects results in x positive test results. 
AMLE provides the adjusted maximum likelihood estimate of 
the prevalence.

Example 2 from Centor (1992), discussed the use of serum 
creatine kinase for the diagnosis of myocardial infarction, a 
test which has relatively poor sensitivity and specificity. For il-
lustration, we used a specificity of 0.63, rather than 0.65 val-
ue suggested by Centor (1992), since with c = 0.65 the AMLE 
equals the usual MLE. The results are similar, however, which-
ever value of c is used. Example 3 comes from Lew and Levy 
(1989), where chest radiographs were used for the diagnosis 
of pulmonary hypertension. Example 4 is the collection of data 
from Jammu Division on Tuberculosis.

 CONFIDENCE INTERVALS
Using the normal approximation to the binomial distribution, 
an approximate confidence interval for p is given by the inter-
section of the interval

With the interval [1-c, s] where  is the usual standard normal 
upper 100(1-α/2)% quantile.

Using Data

X/n = 0.00091

Then C.I ≈ (0, 0.025)

Since p is unknown, it is usually approximated by x/n. In 
the current context, however, p is restricted to the inter-
val [1-c, s]. Therefore, we approximate p by x/n only when                               
1-4/3c < x/n < 3/4s and by 1-4/3c when x/n ≤ 1-4/3c.

Straightforward algebra then shows that the interval 

intersected with the interval [0,1] is an approximate 100(1-
α)% confidence interval for the prevalence . The interval con-
tains both the MLE and the AMLE.

Sample Size for Estimating the Prevalence
In planning a sampled survey, an investigator may wish to de-
termine the sample size that is needed to estimate the preva-
lence to within an accuracy of  using a 100(1-𝛼)% confidence 

interval. Again using the normal approximation to the bino-
mial distribution, it can be easily shown that the sample size 
required is 

                          (4)

where s and c are sensitivity and specificity of the test respec-
tively and p is given by equation (1), based on given value of 
. In practice  is unknown, so one may wish to select a final 
sample size after examining the size suggested by a range of 
values. Equation (4) demonstrates that the sum of the sensi-
tivity and specificity has a very large influence on sample size 
requirements. As expected, when s=c=1, the test is error free, 
p= and equation (4) reduces to the standard binomial sample 
size formula. At the other extreme, an infinite sample size re-
sults if s=c=1, i.e. the test is completely uninformative no mat-
ter how large the sample size. Most situations should fall be-
tween these extremes.
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