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Heavy metals (Cadmium, Nickel, Lead and Chromium) which are natural components of the Earth’s crust are usually 
associated with toxicity. Exposure to heavy metals, even at trace level, is known to be a risk for human beings. The presence 
of zinc, cadmium, nickel and others metals in the aqueous environment has a potentially damaging effect on human 
physiology and other biological systems when the acceptable levels are exceeded. Heavy metals cannot be degraded or 
destroyed. Heavy metal toxicity could result, for instance, from drinking-water contamination (e.g. lead pipes), increased 
ambient air concentrations near sources of emission, or ingestion via the food chain. The increased use of heavy metals 
in industry has resulted in increased availability of metallic substances in natural water sources. Many technologies like 
adsorption, precipitation, membrane filtration, and ion-exchange have been used to remove metal pollutants from water. 
However, adsorption has proven to be economical and efficient for removing heavy metals, organic pollutants and dyes 
from polluted waters. Several adsorbents such as activated carbon, silica, and graphene can be used in the purification of 
water. Activated carbon has shown to be an efficient adsorbent for the removal of a wide variety of organic and inorganic 
contaminants present in the aquatic environment. Because of its high surface areas is widely used in the treatment of 
wastewaters. The effectiveness of Mesoporous silicates in cleaning up polluted water is due to its well developed porosity 
structure as well as the presence of a wide spectrum of surface functional groups. This makes it capable of distributing 
pollutants on its large internal surface, making them accessible to reactants.
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INTRODUCTION
A heavy metal is a member of a loosely defined subset that 
exhibit metallic properties. It mainly includes the transition 
metals, some metalloids, lanthanides and actinides. Many dif-
ferent definitions have been proposed some based on   den-
sity , some on atomic number or atomic weight and some on 
chemical properties or toxicity [11,12] .There are 35 metals 
that concern us because of occupational or residential expo-
sure; from these 23 are the ‘heavy  elements’ or heavy metals 
. These are Sb, As, Bi , Cd ,Cu ,Co ,Ce ,Ga ,Au,Fe ,Pb, Mn 
, Hg, Ni, Pu, Ag, Te , Th, Sn ,Ur ,V and Zn. Some amounts 
of these elements are common in our environment and diet 
and are actually necessary for good health but large amounts 
of any of them cause acute and chronic toxicity .The specif-
ic gravity of water is 1 at 40 c (39F), simply it is stated that 
specific gravity is a measure of density of a given amount of 
a solid substance when it is compared to an equal amount of 
water [1,13]. But some well known toxic metallic elements 
with a specific gravity that is 5 or more times that of water  
As – 5.7 , Cd – 8.65 , Fe – 7.9 , Pb – 11.34 , and Hg – 13.54 
[4,8,9,21,22].

With rapid development of industries such as metal plating 
facilities, tanneries, batteries, paper industries, pesticides and 
heavy metals waste waters are directly or indirectly discharged 
in to the environment increasingly, especially in developing 
countries. Toxic heavy metals are not biodegradable and tend 
to accumulate in living organism and many heavy metal ions 
are known to be toxic or carcinogenic [6,7] . Heavy metals are 
the environmental priority pollutants and are becoming one 

of the most serious environmental problems. So these tox-
ic heavy metals should be removed from the waste water to 
protect the people and the environment. In general irritable 
health concern related to heavy metal might be mainly divid-
ed in to two types, i.e. heavy metal poisoning caused by ex-
cessive extrinsic exposure and genetic disorder [14,15,17,18]. 
This special issue is well organized to explain the biological 
significance of several heavy metals and their toxicity and also 
described the influence of several immune response and me-
tabolism and several related cascades.

Human activities have increased the concentrations of heavy 
metals in the environment .Health risks of heavy metals in-
clude reduced growth and development , cancer organ dam-
age , nervous system damage , and extreme cause death . The 
pollutants that enter the inshore waters and estuaries create 
serious problems causing extensive damage to the life and 
activities of the living aquatic organisms and even to mass 
mortality [10,16,19] . Heavy metal contamination may have 
devastating effects on the ecological balance of the recipi-
ent environment and a diversity of aquatic organisms [2,3,5] 
. Water defects and contamination of existing water supplies 
threaten to be critical environmental issues today for agricul-
tural, domestic and industrial uses [23].

Adsorbents for Heavy metal Removal 
Living organisms require varying amount of heavy metals, 
‘Iron, Cobalt, Copper, Manganese, molybdenum and zinc are 
required by humans. Excessive levels can be damaging to the 
organism .Water contamination with heavy metal is a very 
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important problem in the current world [24]. Concerning the 
heavy metal contamination problem, various water and waste 
water treatment techniques, such as chemical oxidation, re-
duction, precipitation, coagulation , flotation, ion- exchange, 
membrane filtration, microbial degradation and solvent extrac-
tion have been developed [25,26,27&28]. However the appli-
cation of these methods is sometimes restricted because of 
technical or economic constraints. Their major disadvantages 
are incomplete metal removal, high operating cost and gener-
ation of toxic sludge or other waste products. 

The application of adsorption, a more efficient effective and 
economical technology has therefore received increased atten-
tion from both academia and industry in recent years. Adsorp-
tion is a process that occurs when a gas or liquid solute (ad-
sorbate) accumulates on the surface of a solid or more rarely 
in a liquid (adsorbent) to form a molecular or atomic film. The 
process of adsorption involves separation of a substance from 
liquid phase accompanied by its accumulation or concentra-
tion at the surface of another. A solid surface in contact with 
a solution has the tendency to accumulate a surface layer of 
solute molecules, and because of the imbalance of forces, an 
adsorption takes place. The rate of adsorption is defined as 
the rate at which substances are transferred from the liquid 
phase to the solid phase. Most of the colourants are hydro-
phobic in nature and they can be easily adsorbed on the sus-
pended matter from aqueous media .The major advantages 
of adsorption are no sludge formation, simplicity in operation 
and cost effectiveness [26].

Analysis of metal ions at trace levels poses a unique problem 
to analysts, because it involves the rigorous requirements of 
versatility, specificity, sensitivity and accuracy in the analysis .A 
wide veriety of analytical techniques has been developed to-
determine concentrations of trace metals in various samples. 
However the results may be erroneous because the metal ions 
may be present in these samples together with other elements 
at low levels. The most widely used method for the separation 
and preconcentration of metal ions with suitable complexing 
agent is solid phase extraction (SPE) . SPE is considered to be 
a powerful tool for the separation and enrichment of various 
inorganic as well as organic analytes . The basic principle of 
SPE is the transfer of the analyte from the aqueous phase to 
the active sites of the solid phase .The various advantages of 
this techniques are stability and reusability of the solid phase, 
high preconcentration factors, ease of separation and enrich-
ment under dynamic conditions no need for toxic and costly 
organic solvents, minimum costs due to low consumption of 
reagents etc. Current trends in preconcentration focus on the 
development of faster, safer and more environment friendly 
extraction techniques. The techniques generally employed in 
analytical chemistry are liquid-liquid extraction [29-33], copre-
cipitation [34-37], ion-exchange resins [38-41], electrothermal 
deposition [42-43] and solid-phase extraction [44-54]. . Solid 
phase extraction continues to be the leading technique for 
the extraction of pollutants in aquatic systems; recent devel-
opments in this field are mainly related to the use of new sor-
bents. Solid phase extraction (SPE) has emerged as a powerful 
tool for separation/enrichment of inorganics, organics and bio-
molecules. The basic principle of SPE is the transfer of analytes 
from aqueous phase to active sites of adjacent solid phase. 
Recently, solid-phase extraction technique for preconcentra-
tion of heavy metal ions has become very popular, compared 
with traditional solvent extraction techniques and has almost 
replaced liquid-liquid extraction techniques because of several 
advantages:

(1) The fast, simple and direct sample application in very small 
size (micro liter volume) without any sample loss.

(2) Higher preconcentration factor.

(3) The ability of combination with different modern analytical 
techniques.

(4) Time and cost saving.

(5) There is no need of organic solvents which are inflamma-
ble, toxic and even some of them carcinogenic.

(6) Absence of emulsion.

(7) Rapid phase separation.

(8) Stability and re-usability of solid phase.

(9) To isolate analytes from large volumes of sample with mini-
mal or zero evaporation losses.

The choice of solid-phase extractant is a decisive factor that 
affects the analytical sensitivity and selectivity [55]. The main 
requirement with respect to substances to be used as sol-
id-phase extractants are as follows:

(1) Possibility of extracting a large number of elements over a 
wide pH range. 

(2) High surface area and high purity. 

(3) Good sorption properties including porosity, durability and 
uniform pore distribution. 

(4) Selectivity for specific analytes. 

(5) Fast quantitative sorption and elution. 

(6) Regenerability and accessibility.

The substances such as ion-exchange resins [56], chelating 
resins[55-60], modified silica [61-77], alumina[78], activated 
carbon[78-83], zeolite [84], chitosan[85] and polyurethane 
foam[86-91] have been used as solid phase extractant. Ion-ex-
change resins even though frequently used for preconcentra-
tion of metal ions, but have the disadvantage of low sensi-
tivity and selectivity, while chelating sorbents have greater 
selectivity than ion-exchangers. Slow kinetics, irreversible 
adsorption of organics, sensitivity toward many chemical en-
vironment, loss of mechanical stability in modular operation 
and swelling are the main disadvantages exhibited by pol-
ymeric resins. These problems suggest the use of inorganic 
supports in place of polymeric resin. Some of the advantages 
of inorganic supports are:- (1) No Swelling (2) Rapid sorption 
(3) Good mechanical stability (4) Good selectivity A chelating 
sorbent essentially consists of two compounds, the chelate 
forming functional group and polymeric matrix support. Dif-
ferent polymeric materials used for chelating group immobili-
zation can be ordered as follows:- 

Inorganic: - Silica gel, Alumina, Kieselgur, Controlled pore 
glass. 

Support Natural: - Cellulose, Dextran, Activated carbon 

Organic Synthetic: -Polymeric resins, Fibrous materials, Foamed 
plastics

Among the natural organic matrices, is the most extensive-
ly used support for grafting of suitable functional groups 
because of its easy availability, low price and high mechani-
cal strength. Thus, cellulose sorbents with bonded groups of 
iminodiacetic acid, 8-hydroxyquinoline, mercapto groups, 
aminoalkyl groups, pyridyl-azoresorcinol have been frequent-
ly used. In the same way, chelating sorbe nts with functional 
groups immobilized by covalent bonds on silica gel, have been 
synthesized by chemical transformation of the matrix. Even 
though the inorganic supports have high mechanical strength, 
thermal and chemical stability, chelating sorbents based on 
inorganic matrix have a poor degree of functionalization, reli-
ability, and low sorption capacity. The disadvantages of chelat-
ing sorbents with grafted functional groups determined by 
synthesis difficulty, such as: low reversibility of sorption-deso-
rption processes and unsatisfactory kinetic features [92].
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a. Immobilization of organofuntional groups on silica gel sup-
port, offers pronounced advantages over other organic/inor-
ganic supports as listed below. 

b. Immobilization on the silica results in the great variety of 
silylating agents allowing pendant functional groups in the in-
organic framework. 

c. Attachment is easier on silica surface than on organic pol-
ymeric supports which have a high number of cross-linking 
bonds, requiring hours to reach equilibrium for surface acti-
vation.

d. Silica Gel is the first commercially available high specific sur-
face area substrate with constant composition, enabling easy 
analysis and interpretation of results.

e. Silica Gel has high mass exchange characteristics, no swell-
ing and great thermal resistance.

Attention has been focused on various natural supports which 
are able to pollutants from contaminated water at low cost. 
Cost is actually an important parameter for comparing the ad-
sorbent materials. According to [93], a sorbent can be consid-
ered low cost if it requires little procession is abundant in na-
ture or is a byproduct or waste material from another industry. 

Silica Based Adsorbent 
The use of natural siliceous sorbents such as silica beads, 
glasses alunite , perlite  and dolomite  for waste water treat-
ment is increasing because of their abundance , availability 
and low price . Their porous texture, high surface area and 
mechanical stability also make them attractive as sorbents for 
decontamination applications. Activated silica and silica based 
adsorbents have been proved as efficient adsorbents for the 
removal of all categories of dyes [92-97] made an exclusive 
study on the silica nano - sheets derived from vermiculite via 
acid leaching process and they proved that silica nano sheets 
are efficient adsorbents for the removal of cationic dye from 
aqueous solution. However due to their low resistance to-
wards alkaline solutions, their usage is limited to media of pH 
less than 8.   

Three pathways are available for the synthesis of porous hy-
brid matarials based on      organosilica units  (1) the subse-
quent modification of the pore surface of a purely inorganic 
silica material “grafting” (2) the simultaneous condensation of 
corresponding silica and organosilica precursors “Condensa-
tion” (3) the incorporation of organic groups as bridging com-
ponents directly and specifically in to the pore walls by the use 
of bissilylated single source organosilica precursors production 
of periodic mesoporous organosilicas (PMO)”. The synthesis of 
organic – inorganic hybrid materials by hydrolysis and conden-
sation reactions of bridged organo silica precursors of the type 
(R/ O)3 Si – R – Si(O R/)3   has been known for  a long time from 
sol – gel chemistry [98] .In contrast to the organically func-
tionalized silica phases contrast to the organically silica phases 
, which are obtained by postsynthetic  or direct synthesis , the 
organic units in this case are incorporated  in the three – di-
mensional network structure of the silica matrix through two 
covalent bonds and thus distributed totally homogeneously in 
the pore walls. These materials , which are obtained as porous 
aero- and xerogels , can have large inner surface areas of up 
to 1800m2g-1  as well as high thermal stability but generally 
exhibit completely disordered pore systems with a relatively 
wide distribution of pore radii [99]. PMO materials are consid-
ered as highly promising candidates for a series of technical 
applications, for example, in the areas of catalysts, adsorption, 
chromatography, nanoelectrons or the preparation of active 
compound release system. 

Silica gel is a granular porous form of silica and is made syn-
thetically from sodium silicate or silicon tetrachloride or sub-
stituted chlorosilane/orthosilicate solution. Stober et al have 
reported the synthesis of spherical silica particles from tetra-
ethoxysilane using NH3 as catalyst. Silica gel is commonly used 

as rigid matrix for ligand immobilization. The chemical modi-
fication of silica gel surfaces with donor atoms such as N, S, 
O and P is primarily aimed at improving the adsorption and 
exchange properties of the silica gel along with incorporation 
of the particular selective characteristics in to the modified sili-
ca gel phases towards certain metal ions.

The immobilization of chelating materials containing donor at-
oms on the silica gel surface   can occur via chemical bond 
formation between organic modifiers like amino or chloro 
modified silica gel phases or through simple physical adsorp-
tion processes. This process often incorporates selectivity   in 
the synthesized materials [100]

Metal quantification at low concentration levels comprises one 
of the most considered targets in analytical chemistry. Sample 
pretreatment methods, such as separation and /or preconcen-
tration prior to the determination of metal ions have devel-
oped rapidly due to the increasing need for accurate and pre-
cise measurements at extremely low levels of ions in diverse 
matrices. 

Mesoporous silicates
The synthesis, characterization, and application of novel po-
rous materials have been strongly encouraged due to their 
wide range of applications in adsorption, separation, catalysis, 
and sensors. The design, synthesis, and modification of po-
rous materials are in some aspects more challenging than the 
synthesis of dense materials. Therefore, new strategies and 
techniques are continuously being developed for the synthe-
sis and structure tailoring of mesoporous materials. Ordered 
mesoporous materials, based on MCM-4l (Mobile Crystalline 
Material), are silicates obtained by hydrothermal synthesis and 
a liquid templating mechanism [101—106]. Such materials 
exhibit remarkable features such as pores with well-defined 
sizes and uniform shapes that are ordered to some degree 
over micrometer length scales to yield arrays of non-inter-
secting hexagonal channels. The latter structures are readily 
identifiable by transmission electron microscopy (TEM) images 
and X-ray powder diffraction (XRD) patterns (Figure 1). These 
materials possess high surface areas of about 1000 m2/g as 
revealed from surface area measurements. Mesoporous mate-
rials based on MCM-41 show excellent thermal, hydrothermal, 
and hydrolytic stabilities [107—111]. The walls of the chan-
nels are amorphous Si02, and the porosity can be as high as 
80% of their total volume [102,103,107]. These materials can 
be synthesized using anionic, cationic, or neutral surfactants 
or non-surfactant template pathways. The diameter of the 
channels (pores) can be controlled by changing the length of 
the template molecule. Moreover, changing the silica sourc-
es [e.g., fused silica, colloidal silica, tetraethylorthosjlicate 
(TEOS)], surfactants [e.g., hexadecylamine (HDA), and cetyl-
trimethylaminoni urn bromide (CTAB)], auxiliary compounds 
[e.g., l,3,5-trimethylbenzene (TMB)], or reaction conditions 
(solvent, temperature, aging time, reactant mole ratio, and 
the pH of the medium) leads to the production of new mes-
oporous systems. At the same time, these changes also affect 
the thermal, hydrothermal, and mechanical stabilities of the 
materials [101—103,107]. Functionalization of the surface of 
these mesoporous materials with organic or inorganic nctional 
groups leads to new physical and chemical properties [110]. 
These modified materials can be used in a variety of applica-
tions such as catalysis, adsorption, and separation as chro-
matographic column packing [112—114]. The materials have 
been characterized using several characterization techniques 
including X-ray powder diffraction (X), diffuse reflectance 
infrared Fourier transform spectroscopy (DRIFTS), scanning 
electron microscopy (SEM), transmission electron microsco-
py (TEM), elemental analysis (EA), thermogravirnetric analysis 
(TGA), solid-state 29Si and ‘3C nuclear magnetic resonance 
spectroscopy (NMR), and surface area analysis including pore 
size, pore volume, and pore size distribution (PSD) measure-
ments. In addition, the as-synthesized materials have been 
subjected to derivitization reactions in order to modify their 
surface with functional groups of interest. Their adsorption ef-
ficiency and selectivity have been determined along with their 
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applications for separation of heavy and transition metal ions, 
radioactive materials, and organic compounds. This review 
provides an introduction to the fundamental aspects of silicate 
mesoporous materials. It includes an overview and a concise 
historical introduction, a brief initiation to surfactant science, 
a broad introduction to sol-gel science, a general review of 
modification methods for MCM-41, and a summary of some 
applications of these materials. This review also includes intro-
ductions to the application of these modified materials for the 
adsorption and separation of toxic materials. The adsorption 
capacity, selectivity, and separation efficiency are reported, 
and the effect of pH of the media, temperature, and time on 
the adsorption and separation is also covered. In addition, the 
competition effect of some metal ions of alkali and alkaline 
earth metals such as sodium (Na), potassium (K), magnesium 
(Mg), and calcium (Ca) with respect to the adsorption and 
separation of heavy metal ions and radioactive materials is re-
ported. Various techniques were used in order to determine 
the adsorption and separation efficiency such as ultraviolet-vis-
ible spectroscopy (UV-Vis), inductively coupled plasma atomic 
emission spectroscopy (ICP), and atomic absorption spectros-
copy (AAS).

Developments of Porous Materials 
Zeolites and porous silicas take their place among the impor-
tant porous materials for their wide applications in separation 
and catalysis. Zeolites are members of a large family of crystal-
line aluminosilicates. They were first discovered in 1756 by the 
Swedish scientist Cronstedt when an unidentified silicate min-
eral was subjected to heat; these strange minerals were found 
to bubble and froth, releasing bursts of steam. In the nine-
teenth century, zeolite minerals began to be well document-
ed although there was a lack of general scientific interest. 
The term molecular sieve was derived from McBain in 1932 
when he found that chabazite, a mineral, had a property of 
selective adsorption of molecules smaller than 5 Å in diameter 
[115]. In other words, molecular sieves retain the particles that 
fit within the channels and let the larger ones pass through. 
The term molecular sieves is used to describe a class of ma-
terials that exhibit selective sorption properties (i.e., that are 
able to separate a class of mixtures on the basis of molecular 
size and shape). However, Barrer and coworkers [116] studied 
the sorptive properties of chabazite and other porous miner-
als and reported that nitrogen and oxygen could be separated 
using a zeolite that had been treated to provide the necessary 
shape selectivity for discrimination between the molecular di-
mensions. Later, synthetic zeolites began to be used in large 
amounts for the production of pure oxygen from air. Between 
1949 and 1954, Breck and coworkers [117] were able to syn-
thesize a number of new zeolites (types A, X, and Y) which 
were produced in large scale to be used for the separation 
and purification of small molecules. Since then, the nomencla-
ture of this kind of porous material has become universal. The 
success of synthesizing crystalline aluminosilicates, in particular 
the emergence of the new family of aluminophosphates [118] 
and silicoaluminophosphates [119], made the concept of zeo-
lites and molecular sieves more complicated.

The small pore entrances (diameters) in zeolites (e.g., 0.4 nm 
in zeolite A) were attractive for commercial applications be-
cause they provided the opportunity for selective adsorption 
based on small differences in the size of gaseous molecules. 
In addition, these materials caught the attention of scientists 
who were interested in catalysis. At the beginning, the oil in-
dustry was reluctant to accept the idea, since it was thought 
that these materials had pores too small to be of interest for 
cracking activity (break down of long hydrocarbon molecules 
into gasoline and other useful products). The zeolite mar-
keting prospects were improved when Breck and coworkers 
showed rare earth-containing zeolites had the ability to han-
dle cracking activity [117]. There has been, however, a con-
tinually growing interest in expanding the pore sizes of zeo-
type materials from the micropore region to mesopore region 
in response to the increasing demands of both industrial and 
fundamental studies. Examples are the separation of heavy 
metal ions, the separation and selective adsorption of large or-

ganic molecules from waste water, the formation of a supra-
molecular assembly of molecular arrays, the encapsulation of 
metal complexes in the frameworks, and the introduction of 
nanometer particles into zeolites and molecular sieves for elec-
tronic and optical applications [120–122]. Therefore, to meet 
these demands, numerous experiments to create zeotype ma-
terials with pore diameters larger than those of the traditional 
zeolites were carried out. Since it was thought that most of 
the organic templates used to synthesize zeolites affect the 
gel chemistry by filling the voids in the growing porous sol-
id, many of these attempts used larger templates. It was not 
until 1982 that success was achieved by changing the synthe-
sis gel compositions when the first so-called ultra large pore 
molecular sieve, which contains 14-membered rings, was dis-
covered [118]. Indeed, this not only broke the deadlock of the 
traditional viewpoint that zeolite molecular sieves could not 
be constructed with more than 12-membered rings, but also 
stimulated further investigations into other ultra large pore 
molecular sieves, such as VPI-5 with an 18-tetrahedral ring 
opening, cloverite, and JDF-20 [123–125]. While these zeolites 
attracted much attention and were of scientific importance, 
they have not found any significant applications because of 
their inherently poor stability, weak acidity, or small pore size 
(0.8–1.3 nm). As a consequence, they seem to be inferior 
compared to pillared layered clays. 

Yanagisawa et al. described in the early 1990s the synthesis of 
mesoporous materials that have characteristics similar to that 
of MCM-41 [126]. Their preparation method is based on the 
intercalation of long-chain (typically C-16) alkyltrimethylam-
monium cations, into the layered silicate kanemite, followed 
by calcination to remove the organic species, which is later 
called surfactant, yielding a mesoporous material. The silicate 
layers condensed to form a three dimensional structure with 
nanoscale pores. 29Si solid-state NMR spectroscopy indicated 
that a large number of the incompletely condensed silica site 
Si(OSi)3(OH) (Q3) species were converted to the completely 
condensed silica site Si(OSi)4 (Q4) species during the interca-
lation and calcination processes. The X-ray powder diffraction 
gave only an uninformative peak centered at extremely low 
angles. Unfortunately, there were no further characteriza-
tion data available which lead to disregard of the results of 
Yanagisawa et al. in 1992, researchers at Mobil Corporation 
discovered the M41S family of silicate/aluminosilicate meso-
porous molecular sieves with exceptionally large uniform pore 
structures [127] and later they were produced at Mobil Cor-
poration Laboratories [128]. The discovery resulted in a world-
wide resurgence in this area [101–103,107]. The synthesis of 
this family of mesoporous materials is based on the combi-
nation of two major sciences, sol-gel science and surfactant 
(templating) science. The template agent used is no longer a 
single, solvated organic molecule or metal ion, but rather a 
self-assembled surfactant molecular array as suggested initially 
[107–109,111]. Three different mesophases in this family have 
been identified, i.e., lamellar (MCM-50), hexagonal (MCM-
41), and cubic (MCM-48) phases [129]. The hexagonal mes-
ophase, denoted as MCM-41, possesses highly regular arrays 
of uniform-sized channels whose diameters are in the range 
of 15–100Å depending on the templates used, the addition 
of auxiliary organic compounds, and the reaction parameters 
[107–111]. The pores of this novel material are nearly as reg-
ular as zeolites, however, they are considerably larger than 
those present in crystalline materials such as zeolites, thus of-
fering new opportunities for applications in catalysis, chemi-
cal separation, adsorption media, and advanced composite 
materials [111,128,129]. MCM-41 has been investigated 
extensively because the other members in this family are ei-
ther thermally unstable or difficult to obtain [130]. In 1998, 
prominent research produced another type of hexagonal array 
of pores namely Santa Barbara Amorphous no 15 (SBA-15). 
SBA-15 showed larger pore size from 4.6 to 30 nm and dis-
covery of this type of material was a research gambit in the 
field of mesoporous material development [131]. This SBA-15 
mesoporous material has not only shown larger pores, but 
also thermal, mechanical and chemical resistance properties 
and that makes it a preferable choice for use as a catalyst. The 
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formation of ordered hexagonal SBA-15 with uniform pores 
up to 30 nm was synthesized using amphiphilic triblock co-
polymers in strong acidic media was reported in the literature 
[132–134]. A detailed review on types, synthesis, and applica-
tions towards Biorefinery Production of this SBA 15 mesoporo-
us material has already been published in the literature [135].

Hybrid organic inorganic silica nanoparticles are a special class 
of synthetically modified mesoporous materials. Thecomposi-
tion of these nanostructured materials are silicon oxide (SiO2) 
with abundant silanol groups (Si-OH) on the external surface 
and the internal of the pores [Fig.1]. Ordered mesoporous 
silicate has unique properties, including goodmonodispersi-
ty, with extremely high surface areas (>1000 m2/g) due to a 
narrow pore size distribution and well defined porenetworks, 
large pore volume (1.5 cm3/g), controlled poresize (2.0-45.0 
nm) by the size of the surfactant template, high mechanical 
and thermal stability (up to 1000°C) and longer hydrothermal 
treatment times under boiling water and steam, hence provid-
ing a confined space for controlled intrapore inclusion chemis-
try as hosts. Therefore, the mesoporous silicates nanoparticles 
have recently received much attention for their practical ap-
plications in catalysis, adsorption, sensing, lasers, optical and 
electronic devices. These hybrid materials were synthesized us-
ing surfactant/block copolymer as a template in sol-gel chem-
istry [136].

       

Fig-1: SiO2 mesoporoussilicates with abundant silanol 
group( Si-OH)
      

 
Fig. 2: Structure of the surfactant

Fig. 3: Surfactant classification according to the charge of 
head group

Fig. 4: Aggregation of surfactant to form of micelle

Surfactant
Surfactants are surface active agents. At low concentrations, 
they usually reduce the surface or interfacial energies when 
adsorbed onto a surface or interface [137]. They have an am-
phipathic structure with a lyophilic (hydrophilic) head group 
and a lyophobic (hydrophobic) tail (Fig.2). Surfactants are clas-
sified as an ionic (negatively charged head group), cationic 
(positively charged head group), non-ionic (no charge on the 
head group) and zwitterionic or amphoteric (both positive and 
negative charges on the head group) as illustratedin (Fig.3-4) 
[138]. In solution the surfactants tend to aggregate to form 
micelles,when the concentration of the surfactant is equal to 
the critical micelle concentration (CMC). The formation of mi-
celles is governed by molecular interactions (e.g. Vanderwaals 
forces, hydrogen bonding and electrostatic forces) and hydro-
phobic interactions [139]. The major aggregates formed are 
spherical (normal) micelles, cylindrical (rod-like) micelles, hex-
agonal, cubic and lamellar (bi-layer) structures, based on the 
concentration and shape of surfactant [140]. An increase in 
surfactant concentration above the CMC causes the individual 
micellar structures to pack together into different.

Silanol
It is a functional group in silicon chemistry with the connectiv-
ity Si–O–H (Fig.5). It is related to the hydroxy functional group 
(C–O–H) found in all alcohols. Silanols are often invoked as in-
termediates in organosilicon chemistry and silicate mineralogy 
[141].

Fig.5: Structure of Trimethylsilanol
 
From alkoxysilanes
The first isolated example of a silanol was Et3SiOH, reported 
in 1871 by Albert Ladenburg. He prepared the “silicol” by hy-
drolysis of Et3SiOEt (Et = C2H5) [142]. 

From silyl halides
Silanols are generally synthesized by hydrolysis of halosilanes, 
alkoxysilanes, or aminosilanes. Chlorosilanes are the most 
common reactants:

R3Si–Cl + H2O → R3Si–OH + HCl

The hydrolysis of fluorosilanes requires more forcing reagents, 
i.e. alkali. The alkoxysilanes (silyl ethers) of the type R3Si (OR’) 
are slow to hydrolyze. Compared to the silyl ethers, silyl ace-
tates are faster to hydrolyze, with the advantage that the re-
leased acetic acid is less aggressive. For this reason silyl ace-
tates are sometimes recommended for applications [143]. 

From silyl hydrides
An alternative route involves oxidation of hydrosilanes. A wide 
range of oxidants have been employed including air,  perac-
ids,  dioxiranes, and  potassium permanganate  (for hindered 
silanes). In the presence of metal catalysts, silanes undergo 
hydrolysis [143]: 

R3Si–H + H2O → R3Si–OH + H2

Structure and examples
The Si–O bond distance is typically about 1.65 Å. [143] in the 
solid state, silanols engage in hydrogen-bonding [144].

Most silanols have only one OH group, e.g.  trimethylsilanol. 
Also known are some silanediols, e.g.,  diphenylsilanediol. For 
sterically bulky substituents, even silanetriols have been pre-
pared [143].
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Reactions
Acidity
Silanols are more acidic than the corresponding alcohols. This 
trend contrasts with the fact that Si is far less electronegative 
than carbon (1.90 vs 2.55, respectively). For Et3SiOH, the pKa is 
estimated at 13.6 vs. 19 for  tert-butyl alcohol. The pKa  of 
(3-ClC6H4)Si(CH3)2OH is 11.  Because of their greater acidity, 
silanols can be fully deprotonated in aqueous solution, espe-
cially the arylsilanols. The conjugate base is called a siloxide or 
a silanoate. Despite the disparity in acidity, the basicities of the 
two series are similar [143].

Condensation and the sol-gel process
Silanols condense to give siloxanes:

2 R3SiOH → R3Si-O-SiR3 + H2O

The conversions of silyl halides, acetates, and ethers to silox-
anes proceed via silanols. The  sol-gel process, which entails 
the conversion of, for example, Si(OEt)4 into hydrated SiO2, 
proceeds via silanol intermediates.

Silanols exist not only as chemical compounds, but are perva-
sive on the surface of  silica  and related  silicates (Fig.6). Their 
presence is responsible for the absorption properties of silica 
gel [145].  In  chromatography, derivitization of accessible si-
lanol groups in a bonded  stationary phase  with  trimethylsi-
lyl groups is referred to asendcapping.

Fig.6: Trisilanol intermediate in the formation of a cu-
bic silsesquioxane.

Literally, silanol refers to a single compound with the formula 
H3SiOH (Chemical Abstracts  number 14475-38-8). The family 
SiH4−n(OH)n (n = 1, 2, 3, 4) are highly unstable and are mainly 
of interest to theoretical chemists. The perhydroxylated silanol, 
sometimes called orthosilicic acid, is often discussed in vague 
terms, but has not been well characterized.

Application of These Materials in Environmental Pollution 
Control Processes 
Contamination of water streams by transition metals, heavy 
metals, and radioactive compounds (e.g., nickel, copper, lead, 
mercury, cadmium, uranium, and thorium) remains a concern 
in the field of environmental remediation. These materials en-
ter the environment through a variety of avenues that include: 
mining, nuclear power plants, and industrial processing plants. 
Furthermore, some natural waters contain naturally high con-
centration levels of metals [146]. The presence of even low 
concentrations (ppb) of some heavy metals or radioactive sub-
strates in natural water systems can have a harmful effect on 
both wildlife and humans. However, at these low concentra-
tions of metal ions the sample often requires pre-concentra-
tion before analysis can be undertaken. Adsorption onto solid 
substrates (e.g., activated carbons, zeolites, aluminas, and sili-
cas) provides one of the most effective means for adsorption, 
separation and removal of trace pollutants (heavy metal ions, 
radioactive compounds, etc.) from aqueous streams [146,147]. 
A wide variety of novel materials can be prepared by the 
chemical modification of ordered mesoporous materials, since 

numerous organic and inorganic functionalities can be used 
for this purpose. In addition to their use in chromatograph-
ic separations, these materials have been increasingly used as 
heterogeneous catalysts in liquid phase organic reactions. It is 
their characteristics, such as viability and environmental safe-
ty, which makes them alternatives to traditional absorbent 
materials such as activated charcoal and zeolites. Their use as 
efficient materials for the selective adsorption and separation, 
and high capacity uptake of trace metals from aqueous sys-
tems is due to their unique characteristics such as high sur-
face area, large pore size, and presence of reactive groups 
on the surfaces [146-148]. Many of the more recent advanc-
es have been focused on the use of modified silicas for clean 
technology. One area of research in which modified silicas are 
used for clean technology applications, other than catalysis, is 
in the adsorption, separation, removal, and analysis of trace 
components in aqueous systems. A wide variety of analytical 
techniques have been developed to separate and determine 
trace metal concentrations in natural water [146]. Several 
methods have been employed in the adsorption and separa-
tion of metal ions from aqueous solutions, such as activated 
charcoal, zeolites, clays, solvent extraction using a chelat-
ing agent [146] and the use of polymeric resins [147]. These 
methods suffer from a number of drawbacks. The use of ac-
tivated charcoal, zeolites and clays showed low loading ca-
pacities and relatively small metal ion binding constants [148]. 
However, the use of chelating reagents (i.e., iminodiacetate 
resin) is time consuming, whereas organic resins possess low 
surface area and low mechanical stabilities, and the time tak-
en for the metal ion to be complexed, can be of the order of 
hours. Conventional methods such as precipitation are unfa-
vorable especially when dealing with large volumes of matter 
which contain heavy metal ions in low concentration. Typically 
these ions are precipitated as hydrated metal oxides or hydrox-
ides or sulfides using calcium oxide. Precipitation is accompa-
nied by flocculation or coagulation, and one major problem is 
the formation of large amounts of sediments containing heavy 
metal ions. In addition, these methods are often unselective 
towards the metal being analyzed, with interference from al-
kaline earth metals being particularly problematic [149]. In 
recent years, the use of modified mesoporous silica in the 
pre-concentration and separation of trace metal ions has been 
investigated [150]. Modified silica gels offer the advantages 
of high surface areas and increased chemical and mechanical 
stability. Nitrogen-containing organic groups have been shown 
selectively to bind to first row transition metals from solution 
[150]. Thus, Marshall and Mottola [149] prepared an immobi-
lized quinolin-8-ol complex for the pre-concentration and sep-
aration of copper (II) ions. By varying the pH of the solution, a 
variety of transition metal (II) ions could be extracted selective-
ly, even in the presence of alkali and alkaline earth metal ions. 
This makes the material useful for separation and analysis of 
trace metals in natural waters where alkaline earth metals are 
to be expected. There are factors that affect the adsorption 
and selectivity such as the pH and ionic strength of the wa-
ter medium, the concentration ratio of the metal ion to the 
adsorbent, and the agitation time [151]. However, the unitary 
silica framework of siliceous MCM-41 limits its practical appli-
cation, especially in catalysis owing to the lack of active sites. 
Therefore, great efforts have been focused on surface modifi-
cation to expand the area of applications and many elements 
have been doped into the wall of MCM-41 including Al, 
Fe, Zn, Ti, V, Cu, Ni, W, and Mn [152–156]. Many research-
es have been focused on manganese oxides, owing to their 
ion-changing, molecular adsorption, catalytic, and magnetic 
properties and use as catalysts for environmental treatment 
of water. The detailed application of mesoporous materials 
as host-guest chemistry, environmental technology, adsorp-
tion, chemical sensors and electrode catalysis or adsorption is 
broadly reported in the published paper [157].

CONCLUSION
Increased utilization of mechanically stable synthetic matrices 
particularly silica gel as a solid support and its surface modi-
fication either by impregnation of organic ligands directly or 
covalent grafting through spacer unit for extractive concentra-
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tion of trace elements are highlighted in the present article. 
Experimental evidences for existence of surface silanol and its 
chemical nature have explored the idea of silica surface mod-
ification. Recent methods of development in functionalized 
silica synthesis by attachment of various ligands or organic re-
agents to the silica surface and techniques of characterization 
of the modified surface have been reported. Analytical appli-
cations of various modified silica surfaces, in particular, ad-
sorption of trace elements taking separation and pre concen-
tration into account from complex synthetic mixture as well as 
natural water is presented.
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