DENGUE FEVER

DEFINITION
Dengue fever is a mosquito-borne tropical disease caused by the dengue virus. \(^1\) Symptoms typically begin three to fourteen days after infection. This may include a high fever, headache, vomiting, muscle and joint pains, and a characteristic skin rash.

CLASSIFICATION
Typically, people infected with dengue virus are asymptomatic (80%) or have only mild symptoms such as an uncomplicated fever. Others have more severe illness (5%), and in a small proportion it is life-threatening. The incubation period (time between exposure and onset of symptoms) ranges from 3 to 14 days, but most often it is 4 to 7 days. Therefore, travelers returning from endemic areas are unlikely to have dengue if fever or other symptoms start more than 14 days after arriving home. Children often experience symptoms similar to those of the common cold and gastroenteritis (vomiting and diarrhea) and have a greater risk of severe complications, though initial symptoms are generally mild but include high fever.

CAUSES virology
A TEM micrograph showing dengue virus virions (the cluster of dark dots near the center)

Dengue fever virus (DENV) is an RNA virus of the family Flaviviridae: genus Flavivirus. Other members of the same genus include yellow fever virus, West Nile virus, St. Louis encephalitis virus, Japanese encephalitis virus, tick-borne encephalitis virus, Kyasanur forest disease virus, and Omsk hemorrhagic fever virus. \(^2\) Most are transmitted by arthropods (mosquitoes or ticks), and are therefore also referred to as arboviruses (arthropod-borne viruses). \(^3\)

The dengue virus genome (genetic material) contains about 11,000 nucleotide bases, which code for the three different types of protein molecules (C, prM and E) that form the virus particle and seven other types of protein molecules (NS1, NS2a, NS2b, NS3, NS4a, NS4b, NS5) that are found in infected host cells only and are required for replication of the virus. \(^4\) There are five strains of the virus, called serotypes, of which the first four are referred to as DENV-1, DENV-2, DENV-3 and DENV-4. \(^5\) The fifth type was announced in 2013. \(^6\) The distinctions between the serotypes are based on their antigenicity.

TRANSMISSION
Dengue virus is primarily transmitted by Aedes mosquitoes, particularly A. aegypti. These mosquitoes usually live between the latitudes of 35\(^\circ\) North and 35\(^\circ\) South below an elevation of 1,000 metres (3,300 ft) They typically bite during the early morning and in the evening, but they may bite and thus spread infection at any time of day. Other Aedes species that transmit the disease include A. albopictus, A. polynesiensis and A. scutellaris. Humans are the primary host of the virus, but it also circulates in nonhuman primates. An infection can be acquired via a single bite. A female mosquito that takes a blood meal from a person infected with dengue fever, during the initial 2- to 10-day febrile period, becomes itself infected with the virus in the cells lining its gut. About 8–10 days later, the virus spreads to other tissues including the mosquito’s salivary glands and is subsequently released into its saliva.

DIAGNOSIS
The diagnosis of dengue is typically made clinically, on the basis of reported symptoms and physical examination; this applies especially in endemic areas.

LABORATORY TESTS
Graph of when laboratory tests for dengue fever become positive. Day zero refers to the start of symptoms, 1st refers to in those with a primary infection, and 2nd refers to in those with a secondary infection.

The diagnosis of dengue fever may be confirmed by microbiological laboratory testing. This can be done by virus isolation in cell cultures, nucleic acid detection by PCR, viral antigen detection (such as for NS1) or specific antibodies (serology). Virus isolation and nucleic acid detection are more accurate than antigen detection, but these tests are not widely available due to their greater cost. Detection of NS1 during the febrile phase of a primary infection may be greater than 90% sensitive however is only 60–80% in subsequent infections. All tests may be negative in the early stages of the disease. PCR and viral antigen detection are more accurate in the first seven days. In 2012 a PCR test was introduced that can run on equipment used to diagnose influenza; this is likely to improve access to PCR-based diagnosis

PREVENTION
Prevention depends on control of and protection from the bites of the mosquito that transmits it. \(^7\) The World Health Organization recommends an Integrated Vector Control program consisting of five elements: \(^8\)

1. Advocacy, social mobilization and legislation to ensure that public health bodies and communities are strengthened;
2. Collaboration between the health and other sectors (public and private);
3. An integrated approach to disease control to maximize use of resources;
4. Evidence-based decision making to ensure any interventions are targeted appropriately, and
5. Capacity-building to ensure an adequate response to the local situation.

VACCINE
In 2016 a partially effective vaccine for dengue fever became commercially available in the Philippines and Indonesia. It has also been approved for use by Mexico, Brazil, El Salvador, Costa Rica, and Paraguay. In Indonesia it costs about US$207 for the recommended three doses.

MANAGEMENT

KEY WORDS:
There are no specific antiviral drugs for dengue, however maintaining proper fluid balance is important. Treatment depends on the symptoms. Those who are able to drink, are passing urine, have no “warning signs” and are otherwise healthy can be managed at home with daily follow up and oral rehydration therapy. Those who have other health problems, have “warning signs”, or who cannot manage regular follow-up should be cared for in hospital. In those with severe dengue care should be provided in an area where there is access to an intensive care unit.

REFERENCES