Anaesthesia and orphan disease: Anaesthetic management of a child with Scimitar syndrome scheduled for release of temporomandibular joint ankylosis

Dr. A. Rathna
Professor, Department of Anaesthesiology, Saveetha Medical College & Hospital, Chennai, Tamilnadu, India

Dr. Rama Selvam
Associate Professor, Department of Anaesthesiology, ACS Medical College & Hospital, Chennai, Tamilnadu, India

ABSTRACT
Scimitar syndrome is a relatively rare congenital heart defect with a complex combination of cardio pulmonary abnormalities characterized mainly by right lung hypoplasia and partial anomalous pulmonary venous return. We report a ten years old female child diagnosed with Scimitar syndrome at the age of four years with recurrent chest infections, bilateral temporomandibular joint ankylosis, mandibular hypoplasia and a grossly restricted mouthopening for release of ankylosis. Anaesthetic management of this patient was done successfully with use of fiberoptic bronchoscopy for securing the airway.

KEYWORDS
Scimitar syndrome, Partial anomalous pulmonary venous return, Right lung hypoplasia, temporomandibular joint ankylosis, Mandibular hypoplasia

INTRODUCTION
Scimitar syndrome is a rare association of congenital cardiopulmonary anomalies consisting of a partial anomalous pulmonary venous connection of the right lung to the inferior vena cava, right lung hypoplasia, dextroposition of the heart, and anomalous systemic arterial supply to the right lung. The first anatomical observation of this abnormal pulmonary venous return was made by George Cooper an English pathologist and Raoul Chassain from France separately in 1836. Scimitar syndrome accounts for 0.5 to 1% of congenital heart diseases. This rare anomaly has an incidence of approximately 1 to 3 per 100,000 live births. However, the actual prevalence rate is likely to be higher as in many cases the patients remain asymptomatic for most of their lives. The term was first given by Dr. Catherine Neill et al in 1960. Females are more likely to develop the syndrome compared to males. The hallmark of Scimitar syndrome is an anomalous right pulmonary vein that drains part or all of the right lung into the inferior vena cava. The term Scimitar syndrome was coined because of the radiographic appearance of the anomalous vein, which appears as a tubular opacity paralleling the right cardiac border resembling a curved Turkish sword or Scimitar described by Halasz and colleagues in 1956. This is the so-called Scimitar sign. In adults and older children it is usually detected during an investigation for dyspnea, fatigue, recurrent respiratory infections, or an incidental finding on a routine chest radiograph. This adult form of Scimitar syndrome usually is not associated with pulmonary hypertension and typically has mild symptoms and a benign prognosis. The infantile group of patients are symptomatic soon after birth, develop severe pulmonary hypertension and cardiac failure, making management difficult and the mortality is high. Haemodynamically, there is an acyanotic left to right shunt. The anomalous vein usually drains into the inferior vena cava most commonly or into the thirteenth, superior vena cava, the aygous system, the hepatic vein or portal vein. The scimitar syndrome forms about 3–5% of all PAPVC (partial anomalous pulmonary venous connection). About 70% of these patients with scimitar syndrome have an associated atrial septal defect. The other associations with this syndrome are pre- and perinatal asphyxia, placental abruption, placenta previa, small umbilical cord and subcardiac obstruction. Overall, 19% to 31% of patients with scimitar syndrome have associated cardiac anomalies. Other associations include ipsilateral diaphragmatic anomalies, accessory diaphragm, diaphragmatic hernia, localized bronchiectasis, bronchogenic cysts, horseshoe lung, vertebral anomalies like hemivertebrae and genitourinary tract abnormalities. Surgical correction should be considered in the presence of significant left to right shunting and pulmonary hypertension. This involves creation of an inter-atral baffle to redirect the pulmonary venous return into the left atrium. Alternatively, the anomalous vein can be re-implanted directly into the left atrium.

Ankylosis of the temporomandibular joint (TMJ) most often results from trauma or infection, idiopathic or iatrogenic, but it may be congenital or a result of Rheumatoid Arthritis. Chronic painless limitation of motion occurs. This interferes in speech, mastication, maintenance of orodental hygiene, aesthetic and psychosocial problems. It may be a life threatening problem to establish airway in an emergency. Children with bilateral temporomandibular joint ankylosis tend to develop secondary mandibular hypoplasia. Whenankylosis occurs in children while the jaws are still in phase of growth it will cause restriction of growth of mandible. The bird face deformity is responsible for obstructive sleep apnoea in these patients.

CASE REPORT
A ten years old girl presented to the paediatric out patient department at our hospital with history of recurrent chest infections and inability to open her mouth. She had restricted movements of jaws, inadequate chewing, restricted mouth opening, and problems in speech, poor maintenance of orodental hygiene, aesthetic and psychosocial disturbances. Her main complaints were related to her jaw movements and then on elicitation her parent revealed that she suffered from recurrent respiratory infections since early childhood. Presently child had no history of cough, fever, chest pain, palpitations or haemoptysis. The child had a weight of 20 kgs and height of 130 cm. Her heart rate was 80 per minute and regular, blood pressure was 90/60 mmhg and respiratory rate was 18 per minute. Her exercise tolerance was good and she had a MET value of 8. Chest radiography showed a hypoplastic right lung and an emphysematous left lung, rightward shift of trachea, mediastinum and heart. ECG revealed right axis deviation. Echocardiogram revealed moderately elevated pulmonary artery systolic pressure (44 mmHg), mildly dilated right atrium and a hypoplastic right pulmonary artery. Computed tomography scan of chest showed the right pulmonary vein (a large scimitar vein) draining into the inferior vena cava below the diaphragm and dextroposition of the heart. There was no other congenital anomaly. Pulmonary function tests showed moderate obstruction. She was referred to the oromaxillo facial surgery
After obtaining an informed consent from her parents she was posted in the elective surgical list for removal of ankylosis and interpositional arthroplasty with temporalsis muscle. As for any elective surgery the child was fasted for six hours. 1 gm of Cephalexin was given intravenously an hour prior to the surgery. The child was very apprehensive and uncooperative even though she was explained why she would be operated and what would be done was the best for her. In the operating room 0.5 mg of midazolam, 0.1 mg glycopyrrolate, and 2 mg of ondansetron were given intravenously. Asleep fiberoptic nasotracheal intubation was planned as direct laryngoscopy was impossible with the 3 mm inter incisor distance. As a backup plan we had the ENT team for tracheostomy in case it was needed. Xylocetazine drops and 2% xylocaine viscous jelly was instilled into her nostrils. The child was nebulised with 4% xylocaine for fifteen minutes. She was oxygenated with 100% oxygen for five minutes and then inhalational induction was done with sevoflurane in 100% oxygen. Then a size 5 nasopharyngeal airway lubricated with 2% xylocaine viscous jelly was passed into her right nostril gently and a breathing circuit was connected with an endotracheal tube connector and spontaneous respiration was ensured with 100% oxygen and 5% sevoflurane. The fiberoptic bronchoscope was introduced through the left nostril and the vocal cords were visualised and it was advanced gently into the tracheal lumen to the carina. The airway was adequately anaesthetised so the child did not have any reflex response. A size 5 cuffed endotracheal tube was already passed and fixed at the proximal end of the scope. The tube was passed over the bronchoscope into the trachea just above the carina. The endotracheal tube was connected to the breathing circuit and its position was confirmed by capnography trace and bilateral chest auscultation. Intraoperative 2 mg of vecuronium was given for muscle relaxation and intravenous 40 mcg fentanyl was given for analgesia. Anaesthesia was maintained with 50:50 air oxygen mixture with 1 MAC isoflurane due to its lesser effect on hypoxic pulmonary vasoconstriction compared with other inhalational agents. Intermittent positive pressure ventilation was given on a closed circuit and a PEEP of 5 cm of water. Her right radial vein was cannulated and connected to a pressure transducer for blood gas sampling and continuous blood pressure monitoring. Considering her fairly reasonable MET value and being a smaller child an invasive central venous pressure line should always be kept if the first plan fails. Hypoxia, hypercapnia, hypothermia, systemic hypertension and right lung hypoplasia. At the time of surgery, the patient should be optimised in a stable condition for an extended period of time. Nitrous oxide and ketamine should be avoided as they aggravate pulmonary hypertension. Hypoxia, acidosis, hyperventilation. Hypoxia should be avoided as it may also aggravate existing pulmonary hypertension. A target PaCO2 of 30–35 mmHg was achieved with moderate hyperventilation without allowing the pH value to fall below 7.4. Intraoperative fluid therapy should also be carried out restrictively in a targeted manner to optimize right-ventricular preload. Intraoperative management should ensure that depth of anesthesia and analgesia is always sufficient, as stress and pain during awareness may contribute to pulmonary vasoconstriction. An essential goal is to maintain systemic blood pressure above pulmonary arterial pressures, thereby preserving coronary blood flow. Due to hypoplastic right lung we considered use of isoflurane which has minimum effects on hypoxic pulmonary vasoconstriction. Histamine releasing muscle relaxants like atracurium and mivacurium should be avoided as they may further increase pulmonary resistance. Our patient recovered well and was shifted to high dependency unit after surgery for a day and was given adequate analgesics. On follow up after discharge she had a good weight gain and is also doing exercises to prevent recurrence.

CONCLUSION

Scimitar syndrome is a rare congenital heart defect. Pulmonary hypertension is a major reason for elevated perioperative morbidity and mortality, even in noncardiac surgical procedures. The associated right hypoplastic lung should be kept in mind and the patient should be evaluated for the presence of other associated anomalies. Our patient had a near total trisimus and mandibular hypoplasia, was an uncooperative child and did not understand the situation and risks involved. Thought fiberoptic nasotracheal intubation is the standard method of airway establishment an alternative option of tracheostomy should be always be kept if the first plan fails. Hypoxia, hypercapnia, hypothermia, systemic hypotension should be avoided in the perioperative period.

REFERENCES

