
INTRODUCTION 
The origin of graph theory started with the problem of Koinsber 
bridge, in 1735. This problem lead to the concept of Eulerian 
Graph. Euler studied the problem of Koinsberg bridge and 
constructed a structure to solve the problem called Eulerian graph. 
In 1840, A.F Mobius gave the idea of complete graph and bipartite 
graph and Kuratowski proved that they are planar by means of 
recreational problems. The concept of tree, (a connected graph 
without cycles was implemented by Gustav Kirchhoff in 1845, and 
he employed graph theoretical ideas in the calculation of currents 
in electrical networks or circuits. A closed walk in a graph G 
containing all the edges of G is called an Euler line in G. A graph 
containing an Euler line is called an Euler graph. We knowthat a 
walk is always connected. Since the Euler line (which is a walk) 
contains all the edges of the graph, an Euler graph is connected 
except for any isolated vertices the graph may contain. As isolated 
vertices do not contribute anything to the understanding of an 
Euler graph, it is assumed now onwards that Euler graphs do not 
have any isolated vertices and are thus connected. A cycle passing 
through all the vertices of a graph is called a Hamiltonian cycle. A 
graph containing a Hamiltonian cycle is called a Hamiltonian 
graph. A path passing through all the vertices of a graph is called a 
Hamiltonian path and a graph containing a Hamiltonian path is 
said to be traceable. Examples of Hamiltonian graphs. 

EULERIAN GRAPHS
A connected graph G is Eulerian if there exists a closed trail 
containing every edge of G. Such a trail is an Eulerian trail. Note 
that this de�nition requires each edge to be traversed once and 
once only, A non-Eulerian graph G is semi-Eulerian if there exists a 
trail containing every edge of G. Figs 1.1, 1.2 and 1.3 show graphs 
that are Eulerian, semi-Eulerian and non-Eulerian, respectively.

Problems on N Eulerian graphs frequently appear in books on 
recreational mathematics. A typical problem might ask whether a 
given diagram can be drawn without lifting one's pencil from the 
paper and without repeating any lines. The name 'Eulerian' arises 
from the fact that Euler was the �rst person to solve the famous 

Konigsberg bridges problem which asks whether you can cross 
each of the seven bridges in Fig. 1.4 exactly once and return to 
your starting point. This is equivalent to asking whether the graph 
in Fig. 1.5 has an Eulerian trail. A translation of Euler's paper, and a 
discussion of various related topics, may be found in Biggs, Lloyd 
and Wilson.

1.4

1.5

One question that immediately arises is 'can one �nd necessary 
and suf�cient conditions for a graph to be Eulerian?' Before 
answering this question in Theorem 1.2, we prove a simple lemma. 
Proof. If G has any loops or multiple edges, the result is trivial. We 
can therefore sup pose that G is a simple graph. Let v be any vertex 
of G. We construct a walk v —> v\ —> v2 —> " * * inductively by 
choosing v\ to be any vertex adjacent to v and, for each / > 1, 
choosing vz-+1 to be any vertex adjacent to vz except v^; the 
existence of such a vertex is guaranteed by our hypothesis. Since G 
has only �nitely many vertices, we must eventually choose a vertex 
that has been chosen before. If v# is the �rst such vertex, then that 
part of the walk lying between the two occurrences of v^ is the 
required cycle. //
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There are many games and puzzles which can be analyzed by graph theoretic concepts. In fact, the two early discoveries which led 
to the existence of graphs arose from puzzles, namely, the Konigsberg Bridge Problem and Hamiltonian Game, and these puzzles 
also resulted in the special types of graphs, now called Eulerian graphs and Hamiltonian graphs. Due to the rich structure of these 
graphs, they wide use both in research and application. In recent years, graph theory has established itself as an important 
mathematical tool in a wide variety of subjects, ranging from operational research and chemistry to genetics and linguistics, and 
from electrical engineering and geography to sociology and architecture. At the same time it has also emerged as a worthwhile 
mathematical discipline in its own right.  In view of this, there is a need for an inexpensive introductory text on the subject, suitable 
both for mathematicians taking courses in graph theory and also for non specialists wishing to learn the subject as quickly As 
possible. It is my hope that this book goes some way towards �lling this need. The only prerequisites to reading it are a basic 
knowledge of elementary set theory and matrix theory, although a further knowledge of abstract algebra is needed for more 
dif�cult exercises.
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Proof. => Suppose that P is an Eulerian trail of G. Whenever P 
passes through a vertex, there is a contribution of 2 towards the 
degree of that vertex. Since each edge occurs exactly once in P, 
each vertex must have even degree. <= The proof is by induction 
on the number of edges of G. Suppose that the degree of each 
vertex is even. Since G is connected, each vertex has degree at least 
2 and so, by Lemma 1.1, G contains a cycle C. If C contains every 
edge of G, the proof is complete. If not, we remove from G the 
edges of C to form a new, possibly disconnected, graph H with 
fewer edges than G and in which each vertex still has even degree. 
By the induction hypothesis, each component of H has an Eulerian 
trail. Since each component of H has at least one vertex in common 
with C, by connectedness, we obtain the required Eulerian trail of 
G by following the edges of C until a non-isolated vertex of H is 
reached, tracing the Eulerian trail of the component of H that 
contains that vertex, and then continuing along the edges of C 
until we reach a vertex belonging to another component of H, and 
so on. The whole process terminates when we return to the initial 
vertex (see Fig. 1.6). // 

This proof can easily be modi�ed to prove the following two 
results. We omit the details.

Note that, in a semi-Eulerian graph, any semi-Eulerian trail must 
have one vertex of odd degree as its initial vertex and the other as 
its �nal vertex. Note also that, by the handshaking lemma, a graph 
cannot have exactly one vertex of odd degree. We conclude our 
discussion of Eulerian graphs with an algorithm for constructing 
an Eulerian trail in a given Eulerian graph. The method is known as 
Fleury's algorithm.  Proof. We show �rst that the construction can 
be carried out at each stage. Suppose that we have just reached a 
vertex v. If v ^ u, then the subgraph H that remains is connected 
and contains only two vertices of odd degree, u and v. To show that 
the construction can be carried out, we must show that the 
removal of the next edge does not disconnect H - or, equivalently, 
that v is incident with at most one bridge. But if this is not the case, 
then there exists a bridge vw such that the component KofH-vw 
containing w does not contain u (see Fig. 1.7). Since the vertex w 
has odd degree in K, some other vertex of K must also have odd 
degree, giving the required contradiction. If v = w, the proof is 
almost identical, as long as there are still edges incident with u.

1.7

HAMILTONIAN GRAPHS
In the previous section we discussed whether there exists a closed 
trail that includes every edge of a given connected graph G. A 
similar problem is to determine whether there exists a closed trail 
passing exactly once through each vertex of G. Note that such a 
trail must be a cycle, except when G is the graph N\. Such a cycle is 
a Hamiltonian cycle and G is a Hamiltonian graph. A non-
Hamiltonian graph G is semi-Hamiltonian if there exists a path 
passing through every vertex. Figs 2.1, 2.2 and 2.3 show graphs 
that are Hamiltonian, semi-Hamiltonian and non-Hamiltonian, 

respectively. 

The name 'Hamiltonian cycle' arises from the fact that Sir William 
Hamilton investigated their existence in the dodecahedron graph, 
although a more general problem had been studied earlier by the 
Rev. T.P. Kirkman. Such a cycle is shown in Fig. 7.4, with heavy lines 
denoting its edges.

In Theorem 1.2 and Corollary 1.3 we obtained necessary and 
suf�cient conditions for a connected graph to be Eulerian, and we 
may hope to obtain similar characterizations for Hamiltonian 
graphs. As it happens, the �nding of such a characterization is one 
of the major unsolved problems of graph theory! In fact, little is 
known in general about Hamiltonian graphs. Most existing 
theorems have the form, 'if G has enough edges, then G is 
Hamiltonian'. Probably the most celebrated of these is due to G.A. 
Dirac, and known as Dirac's theorem. We deduce it from the 
following more general result of O. Ore. 

Proof We assume the theorem false, and derive a contradiction. So 
let G be a non Hamiltonian graph with n vertices, satisfying the 
given condition on the vertex degrees. By adding extra edges if 
necessary, we may assume that G is 'only just' non Hamiltonian, in 
the sense that the addition of any further edge gives a Hamiltonian 
graph.

2.5

CONCLUSION
Two concepts that are well-known and studied in Graph Theory 
are: Eulerian and Hamiltonian (di)cycles. An Eulerian (di)cycle in a 
(di)graph is a (di)cycle C such that an edge (resp. an arc) appears 
exactly once in C. A close notion is the Hamiltonian (di)cycle: where 
a vertex appears exactly once . A graph is Eulerian iff every vertex 
has an odd degree, and a digraph is Eulerian iff every vertex has 
equal indegree and outdegree. Therefore deciding if there is an 
Eulerian (di)cycle in a (di)graph G can be done in polynomial time; 
but deciding if there is a Hamiltonian (di)cycle is an NP-complete 
problem . A recent work generalizes the graph-theoretic concept 
of an Euler cycle to undirected hypergraphs. We now generalize 
the digraph-theoretic concept of an Eulerian dicycle to directed 
ones. We say that an Eulerian dicycle in a dihypergraph is a 
dicycleC such that a hyperarc appears exactly once in C. It is a 
natural generalization of an Eulerian dicycle in a digraph. We also 
de�ne and study a generalization of Hamiltonian dicycles to 
directed hypergraphs. 
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