
1. Introduction
Fuzzy set theory is a tool that makes possible to describe vague and 
uncertain notions. Fuzzy Differential Equation (FDE) models have 
wide range of applications in many branches of engineering and in 
the �eld of medicine. The concept of a fuzzy derivative was �rst 
introduced by Chang and Zadeh [5], later Dubois and Prade [6] 
de�ned the fuzzy derivative by using Zadeh's extension principle 
and then followed by Puri and Ralescu [18]. Fuzzy differential 
equations have been suggested as a way of modelling uncertain 
and incompletely speci�ed systems and were studied by many 
researchers [9, 10, 11]. The existence of solutions of fuzzy 
differential equations has been studied by several authors . It is 
dif�cult to obtain exact solution for fuzzy differential equations 
and hence several numerical methods where proposed [13]. 
Abbasbandy and Allahviranloo [2] developed numerical 
algorithms for solving fuzzy differential equations based on 
Seikkala's derivative of fuzzy process [21]. Runge-Kutta method 
for fuzzy differential equation has been studied by many authors 
[1]. Murugesan et al. [14] compared fourth order RK methods 
based on variety of means and concluded that RKCeM works very 
well to solve system of IVPs and they also developed [15] a new 
embedded RK method based on AM and CeM. 

Sanugi and Yaacob [20] developed a new �fth order �ve-stage 
Runge-Kutta method for initial value type problems in ODEs. 
Yaacob and Sanugi [22] studied and developed a �fth -order �ve-
stage RK method based on Harmonic Mean. Ponalagusamy, 
Alphonse, and  Chandru [17] gave new algorithm of �fth – order 
Heronian Mean Runge – Kutta method. Evans and Yaacub [8] 
developed a new �fth order weighted Runge – Kutta formula. 
Evans  and Yaakub [7] proposed  a �fth order Runge-Kutta RK(5, 5) 
method with error control In this paper, the new algorithms for 
�fth order Runge –Kutta method based on Contra - Harmonic 
Mean is developed and applied to solve fuzzy initial value problems 
with its initial value as triangular, trapezoidal and parallelogram 
fuzzy numbers . It is concluded from the example taken that the 
proposed methods RK5CoM works very well to solve fuzzy initial 
value problem.  

The structure of the paper is organized as follows: In Section 2, 
some basic concepts of fuzzy set theory, fuzzy initial value 
problem, �fth order Runge-Kutta formula based on Contra - 
Harmonic  Mean for solving Initial Value Problem is given. Fuzzy 
initial value problem is de�ned in Section 3.  In section 4, numerical 
algorithm for solving the fuzzy initial value problems by the �fth 
order Runge-Kutta method based on the proposed method is 
discussed. The proposed algorithm is illustrated by an example in 

section 5 and the conclusion is in section 6.

2. Preliminaries
De�nition 2.1. A fuzzy number is a fuzzy set u : → [0, 1]which ฀
satis�es 
1. u is upper semi-continuous.
2. u(x) = 0 outside some interval [c, d],
3. there are real numbers a, b for which 
c ≤ a ≤ b ≤ d such that
3.1.  u(x) is monotonic increasing on [c, a],
3.2.  u(x) is monotonic decreasing on [b,d], and 
3.3.  u(x) = 1, a ≤ x ≤ b.

De�nition 2.2. A fuzzy number u in parametric form is a pair ((), 
()), [0, 1],uururr=Î ()urwhich satis�es the following requirements:

1. is a bounded left continuous monotonic increasing function 
over [0, 1],()ur
2. is a bounded left continuous monotonic decreasing function 
over [0, 1], and 
3. ≤ , 0 ≤ r ≤ 1.
A crisp number α is simply represented by == α, 0 ≤ r ≤ 1.

De�nition 2.3.
A triangular fuzzy number , is de�ned by three numbers where  a  1v
<a  <a   the graph of v(x) the membership function of the fuzzy 2 3

number v, is a triangle with base on the interval          and vertex at 
x = a2. And v is speci�ed as . The membership function for              
the triangular fuzzy number                     is de�ned as: 

and one can write:

De�nition 2.4.
A trapezoidal fuzzy number u, is de�ned by four real numbers k <  l
< m < n where the base of the trapezoidal is the interval [k, n] and 
its vertices at x= , x=m. Trapezoidal fuzzy number will be written as l
u = (k, , m, n). The membership function for the trapezoidal fuzzy l
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number u = (k, , m, n) is de�ned as the following :l

and one can have :
(1) u > 0 if  k > 0  (2) u > 0 if  l > 0;
(3) u > 0 if  m > 0; and  (4) u > 0 if  n > 0.

De�nition 2.5.
A parallelogram fuzzy number u is de�ned by four real numbers k< 
l< m< n, where the base of the parallelogram is the interval  [k, n] 
and its vertices at x = l, x = m. Parallelogram fuzzy number will be 
written as u = (k, l, m, n). The membership function for the 
parallelogram fuzzy number u = (k, l, m, n) is de�ned as the 
following:

and one can have :
(1) u > 0 if  k > 0  (2) u > 0 if  l > 0;
(3) u > 0 if  m > 0; and  (4) u > 0 if  n > 0.

Let E be the set of all upper semi continuous normal convex fuzzy 
numbers with bounded r−level intervals. It means that is then vEÎ
r-level set

is a closed bounded interval which is denoted by

Lemma 2.1. Let v, w   E and s a scalar, then for r  (0, 1]Î Î

[v + w]r = [v (r) + w (r),  v (r) + w (r)],[v − w]r = [v (r) − w (r),  v2(r) − 1 1 2 2 1 1

w (r)],[v · w]r = [min{v (r) · w (r), v (r) · w (r),  v (r) · w (r), v2(r) · 2 1 1 1 2 2 1

w (r)},max{v (r) · w (r), v (r) · w (r),  v (r) · w (r), v (r) ·w (r)}]. [sv]r  = 2 1 1 1 2 2 1 2 2

s[v]r.

The collection of all fuzzy numbers with addition and multiplica-
1tion is denoted by E  and is a convex cone.

De�nition 2.5. For arbitrary fuzzy numbers                        and
                  the Quantity  

                                                                                            (2.1)
is the distance between u and v. 

The function D (u, v) is a metric on E�. This metric function is 
equivalent to the one used by Puri and Ralescu [17] and Kaleva [9].

 De�nition 2.6. A function                   is called a fuzzy function. If 
for arbitrary �xed          and  >0,  δ>0  such that  Î

                                                                                            (2.2)
 exists,  f  is said to be continuous.

Suppose that 1    y : I�® E  is a fuzzy function. The parametric form of 
y (t) is represented by                                 tÎ I,  r Î (0, 1],           (2.3) 
where I is a real interval. The Seikkala [20] derivative         of a fuzzy 
function y (t) is de�ned by

                                                              tÎ I,  r Î (0, 1],           (2.3) 

 provided that this equation de�nes a fuzzy number.   

2.1. The �fth order Runge-Kutta formula based on Contra - 
Harmonic Mean of IVPs 

Consider the initial value problem 

                                                                                            (2.5)    

The basis of all Runge-Kutta method is to express the difference 
between the value of y at        and      as

                                                                                            (2.6)

where for i = 1, 2, …, m, wi's are constants and

                                                                                            (2.7)
Equations (2.7) is to be exact for powers of h through , because it m h
is to be coincident with Taylor series of order m. Therefore, the 
truncation error T , can be written asm

                                                                                            (2.8)
The �fth order Runge-Kutta formula based on Contra - Harmonic 
Mean for solving initial value problem of the form                  may 
be written as follows: 

                                                                                            (2.9)
 where,

                                                                                         (2.10)

The classical �fth order Runge-Kutta formula for solving initial 
value problem of the form                     may be written as follows:

                                                                                          (2.11)
 where,
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The local truncation error (LTE) of the method is given by the 
following:  
RK5CoM:

                                                                                         (2.14) 
3. Fuzzy Cauchy Problem
Consider the fuzzy initial value problem

                                                                                            (3.1)
with the grid points 

                                                                                            (3.2)

where f is a continuous mapping from R+ × R into R and y0 E with Î
r-level sets 

                                                                  
The extension principle of Zadeh leads to the following de�nition 
of f (t, y) when  y = y(t) is a fuzzy number

It follows that

where

                                                                                            (3.3)   
Theorem 3.1. Let f satisfy

where g : R+ × R+→R+ is a continuous mapping such that r → g(t, 
r) is non decreasing and the initial value  problem 

                                                                                            (3.4)          

has a solution on R+ for u0 > 0 and that  u(t)  0 is the only solution º
of (3.4) for u0 = 0. Then the fuzzy initial value problem (3.1) has a 
unique solution.
Proof: see [21].

4. The �fth order RK methods based on Contra - Harmonic 
Mean for solving Fuzzy Initial Value Problems 
We consider fuzzy initial value problem (3.1) with the grid points 
(3.2)
Let the exact solution [Y (t)] r = [Y (t; r), Y�(t; r)] is approximated by 1

some
[y(t)]r = [y (t; r), y (t; r)].1 2

From (2.6), (2.7) we de�ne

                                                                                            (4.1)
where the wi's are constants 

                (4.2)

and

                                                              (4.3)
where in the Runge-Kutta method of order �ve based on Contra - 
Harmonic Mean , 

                                                                                            (4.4)
De�ne

The exact and approximate solutions at t , 0 ≤ n ≤ N are denoted byn

[Y (t )]r = [Y (t ; r), Y (t ; r)] and [y(t )]r = [y (t ; r), y (t ; r)] respectively. n 1 n 2 n n 1 n 2 n

The solution is calculated by grid points at(2.13).

By (4.1) and (4.5), we have

                (4.6)
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We de�ne

                            
(4.7)
The lemmas given below will be applied to show convergence of 
these approximates in theorem 4.2. That is

Lemma 4.1 [13] Let the sequence of numbers
satisfy

for some given positive constants A and B. Then

Lemma 4.2 [13] Let the sequence of numbers
satisfy

for some given positive constants A and B, then denoting

Then

where                  and B = 2B.

Let F(u, v) and G( u, v) be obtained by substituting [yn(r)] = [u, v] in 
(4.5)

The domain of F and G is 
K = {(t, u, v) |0 ≤  t ≤ T, −∞ < v < ∞ , −∞ < u ≤ v}.

5Theorem 4.1. Let F (t, u, v) and G (t, u, v) belong to C  (K) and let 
the partial derivatives of F and G be bounded over K. Then, for 
arbitrary �xed r, 0 ≤ r ≤ 1, the approximate solutions (4.7) converge 
to the exact solutions Y  (r) and Y  ( r) uniformly in t.1 2

5. Numerical Examples
Example 5.1. Consider the fuzzy differential equation

                (5.1)       

The exact solution is given by

At t=1 we get 

The absolute error for the proposed method are compared with 
the classical �fth order RK method and are given in tables 5.1, 5.2, 
5.3 respectively for the example 5.1 using tringular, trapezoidal 
and parallelogram fuzzy numbers when t=1 with the step size   h = 
0.01.

Table 5.1(for Triangular fuzzy number when h=0.01 and t=1)

Table 5.3 (For Parallelogram Fuzzy Number when h=0.01 
and t=1)

The absolute error of RK5CoM is compared with the classical RK5 
when h = 0.1 and t = 1 for the example 5.1 using triangular , 
trapezoidal and parallelogram fuzzy numbers and are represented 
in �gures 5.1, 5.2, 5.3 respectively.

Figure 5.1 (t=1)

Trape FN Error in RK5CoM Error in RK5

r y1 y2 y1 y2
0 4.40E-12 6.05E-12 3.02E-11 4.15E-11

0.1 4.47E-12 5.99E-12 3.07E-11 4.12E-11
0.2 4.54E-12 5.94E-12 3.11E-11 4.08E-11
0.3 4.60E-12 5.88E-12 3.16E-11 4.04E-11
0.4 4.68E-12 5.83E-12 3.21E-11 4.00E-11
0.5 4.74E-12 5.78E-12 3.26E-11 3.96E-11
0.6 4.81E-12 5.72E-12 3.30E-11 3.93E-11
0.7 4.88E-12 5.67E-12 3.35E-11 3.89E-11
0.8 4.95E-12 5.61E-12 3.40E-11 3.85E-11
0.9 5.02E-12 5.56E-12 3.45E-11 3.81E-11
1 5.09E-12 5.50E-12 3.49E-11 3.78E-11

Trape FN Error in RK5CoM Error in RK5
r y1 y2 y1 y2
0 6.05E-12 8.25E-12 4.15E-11 5.66E-11

0.1 6.14E-12 8.34E-12 4.22E-11 5.73E-11
0.2 6.23E-12 8.43E-12 4.28E-11 5.79E-11
0.3 6.32E-12 8.52E-12 4.34E-11 5.85E-11
0.4 6.41E-12 8.61E-12 4.40E-11 5.91E-11
0.5 6.50E-12 8.70E-12 4.46E-11 5.97E-11
0.6 6.59E-12 8.79E-12 4.53E-11 6.04E-11
0.7 6.69E-12 8.89E-12 4.59E-11 6.10E-11
0.8 6.78E-12 8.97E-12 4.65E-11 6.16E-11
0.9 6.86E-12 9.07E-12 4.71E-11 6.22E-11
1 6.96E-12 9.15E-12 4.78E-11 6.29E-11
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Figure 5.2 (when h=0.1 and t=1)

Figure 5.3 (h=0.1 and t=1)

6. Conclusions
 The proposed Fifth Order Runge-Kutta method based on Contra - 
Harmonic Mean has been applied in this paper for �nding the 
numerical solution of fuzzy differential equations. And it is 
compared with the classical �fth order Runge –Kutta method 
based on Arithmetic mean. From the tables 5.1, 5.2, 5.3 of 
example 5.1, the conclusion could be made for our proposed 
method that the �fth order Runge – Kutta method based on 
Contra - Harmonic Mean gives better solution than the classical 
�fth order Runge Kutta method. It can also be concluded that the 
triangular and trapezoidal fuzzy numbers works well for solving 
example 5.1 using the proposed method. The proposed �fth order 
Runge – Kutta methods based on Contra - Harmonic Mean gives 
good accuracy when the step size is taken to be minimum as 
h=0.01 and  suits very well to solve fuzzy initial  value problems 
with triangular, trapezoidal and parallelogram fuzzy numbers as its 
initial value.
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