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ABSTRACT

1 Introduction

In 1963, Kelley [4] initiated the study of bitopological spaces. A nonempty set X equipped
with two topological spaces T, and 1, is called a bitopological spaces and is denoted by
(X,t,,7,). Fukutake [3] introduced generalized closed sets in bitopological space. M. Lellis
Thivagar and O.Ravi [7] introduced a new type of generalized sets called (1,2)*-semi
generalized closed sets and a new class of generalized functions called (1,2)*-semi
generalized continuous maps in 2006. S.S. Benchalli and J.B.Toranagatti [1] introduced

delta generalized pre-closed sets in topological space. In this paper, we introduced the new
concepts of (1,2)*—0gp closed sets and (1,2) * —dgp open sets and study their basic properties

in bitopological spaces.

2 Preliminaries
Throughout this paper (X,t,,7,) (or briefly X ) represent bitopological spaces on which no
separation axioms are assumed unless otherwise mentioned.

Definition 2.1. [8] A subset B of a bitopological space (X,t,,t,) is called t,t, —open if
B=U,UU, where U, €1, and U, et,. The complement of t,t, —open is called T, —
closed.

Remark 2.2. [8] 1,1, —open X subset of need not necessarily from a topology.

Definition 2.3. [8] A subset A of a bitopological space (X,t,,T,) is called

(i) The t,t,—closure of A, denoted by t,T,-cl(A) is defined by 7,1, —closure
(A)=N{F/A cF and Fis 1,1, —closed}.

(i) The t,v, —interior of A, denoted by tmit2 -int(A) is defined by 1,1, —interior
(A)=U{F/A cFandFistt,—open}.

Definition 2.4. A subset A of a bitopological space (X,t,,7,) is called
(1) (L2)*-pre-open [8] if A <11, -int(t T, -cl(A))and (1,2)*-pre-closed if
1,1, -cl(t T, -int(A))c A.

H www.worldwidejournals.com | [ 27 F




PARIPEX - INDIAN JOURNAL OF RESEARCH VOLUME-6 | ISSUE-7 | JULY-2017 | ISSN - 2250-1991 | IF : 5.761 | IC Value : 79.96

() 1,2)*-b open [5] if A c(t;1,-cl@ T, -int(A))U (T, -int(r T, - cl(A)))and
(1,2)*-b closed if (tt, -cl@ T, -int(A))) (T, -int( T, -cl(A))) CA.

(iii) (1,2)*-regular-open [11] if A=t t, -int(r T, -cl(A)) and (1,2)*- regular-closed if
A=tpr,-cl(t T, -int(A)).

The (1,2)*-pre-closure of a subset A of X, denoted by (1,2)*-pcl(A) is the intersection
of all (1,2)*-pre-closed sets containing A. The (1,2)*-pre-interior of a subset A of X,
denoted by (1,2)* - pint(A) is the union of (1,2)*-pre-open sets contained in A.

Definition 2.5. A subset A of a bitopological space (X,t,,T,) is called

(i) (1,2)*- generalized closed set (briefly (1,2)*-g closed) [10] if t,T,-cl(A)c U
whenever Ac U and Uis T, -openin X.

(ii) (1, 2)*- generalized b -closed set (briefly (1,2)*-gb closed) [12] if T,T, -bcl(A)c U
whenever Ac U and Uis 1,7, -openin X.

(iii) (1, 2)*- generalized pre-closed set (briefly (1,2)*-gp closed) [13] if T,T, -pcl(A)c U
whenever Ac U andU is t,t,-openin X.

(iv) (1, 2)*- generalized pre regular closed set (briefly (1,2)*-gpr closed) [9] if
1,7, -pcl(A)c Uwhenever A c U and U is (1,2)*-regular open in X.

The complement of the above mentioned closed sets are their respective open sets.

3 (1,2)*-0gp Closed Sets

We introduce the following definitions.

Definition 3.1. The (1,2)*-0 interior of a subset A of X is the union of all (1,2)*-regular
open set of X contained in A and is denoted by (1,2)*-0 int(A). The subset A is called
(1,2)*-6 open if A=(1,2)*-0 int(A), ie. a set is (1,2)*-0 open if it is the union of
(1,2)*-regular open sets. The complement of a (1,2)*-0 open is called (1,2)*-0 closed.
Alternatively, a set A < (X,t,,T,) is called (1,2)*-0 closed if A=(1,2)*-8cl(A), where
(1,2)*-8cl(A)={xe X:t 1, -int(t T, -cl(A)NA=¢, Uetr,,xcU}.

Definition 3.2. (1,2)*-0 generalized closed set (briefly (1,2)*-8g closed) if
7,1, -0cl(A)c U whenever Ac U and U is 1,7, -openin X.

Definition 3.3. A subset A of a bitopological space (X,t,,7,) is called (1,2)*- delta
generalized pre-closed (briefly, (1,2)*-0gp closed) if (1,2)*-pcl(A) cU whenever
AcUand Uis (1,2)*-0 open in X. The family of all (1,2)*-0gp closed sets in a
bitopological space X is denoted by dGPC(X).

Example 3.4. Let X={a,b,c}, 1, ={¢,{a},X} and 1, ={¢, {b},{a, b}, X}, then (1,2)*-
OGPC(X)={0, {c},{b,c},{a,c},X}.

Theorem 3.5. Every (1,2)*-closed setis (1,2)*-0gp closed set.
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Example 3.7. Let X={a,b,c}, 1, ={¢,{b},X} and v, ={¢, {a},{a,c}, X}.Then {a,b} is
(1,2)*-0gpclosed but not (1,2)*-closed.

Theorem 3.8. Every (1,2)*-pre-closed setis (1,2)*-dgpclosed set.

Proof. Suppose that A is (1,2)* - pre-closed. Let Ac U and U is (1,2)*-6 openin X. Since

A is (1,2)*-pre-closed, (1,2)*-pcl(A)=A. Hence (1,2)*-pcl(A) < U. Therefore A is
(1,2)*-0gp closed.

Remark 3.9. The converse of the above theorem is not true in general as shown in the
following example.

Example  3.10. Let X={a,b,c,d}, T, ={0,{b},{a,b},{a,b,c}, X} and
T, ={¢,{a},{b},{a,b},X}. Then {a,b,d} is (1,2)*-0gp closed but not (1,2)*-
preclosed.

Theorem 3.11. Every (1,2)*-gp closed setis (1,2)*-0gpclosed set.

Proof. Suppose that A is (1,2)*-gp closed. Let Ac U and U is (1,2)*-8 open in X.

Suppose A is not (1,2)*-dgp closed, then (1,2)*-pcl(A)z U. Since every (1,2)*-8 open

set is 1,1, -open, (1,2)*-pcl(A)z U. and U is 71,1, -open. This contradicts that A is
(1,2) *-dgpclosed.

Remark 3.12. The converse of the above theorem is not true in general as shown in the
following example.

Example 3.13. Let X={a,b,c,d}, t, ={¢,{b},{a,b,c}, X} and 1, ={¢,{a},{a, b}, X}.
Then {a, c} is (1,2)*-0gpclosed but not (1,2)*-gp closed.

Theorem 3.14. Every (1,2)*-0gpclosed setis (1,2)*-gpr closed set.

Proof. Suppose that A is (1,2)*-dgpclosed. Let Ac U and U is (1,2)*- regular open in
X. Suppose A is not (1,2)*-gpr closed, then (1,2)*-pcl(A) ¢ U and U is (1,2)*-regular
open. Since every (1,2)*-regular open set is (1,2)*-6 open in X, (1,2)*-pcl(A) ¢ Uand
Uis (1,2)*-8 open. This contradicts that A is (1,2)*-gpr closed.

Remark 3.15. The converse of the above theorem is not true in general as shown in the
following example.

Example 3'16° Let X= {a: b: C}o Tl = {d)a {b}a {aob}a {ba C}a X} and T2 = {(I) 4 {a}a {a,c},X}.
Then {a,b} is (1,2)*-gpr closed but not (1,2)*-dgpclosed.

Remark 3.17. The following example shows that (1,2)*-0gpclosed set is independent of
(1,2)*-b closed and (1,2) *-gb closed sets.

Example 3.18. Let X={a,b,c}, t, ={¢,{a}, X}and t, ={0¢, {c},{a,c}, X}. Then {a} is
(1,2)*-gb closed and (1,2)*-b closed but not (1,2)*-3gp closed.
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Example 3.19. Let X={a,b,c,d}, 7, ={0,{a},{a,b,c},X} and t, ={9,{b}, {a, b}, X}.
Then {a,b,c} is (1,2)*-dgp closed but not (1,2)*-b closed and (1,2)*-gb closed.

4 properties of (1,2)*-3gp closed sets

Theorem 4.1. If A is (1,2)*-0gp closed set in a bitopological space (X,t,,T,) and
AcB c(1,2)*-pcl(A), then Bis (1,2)*-0gp closed.

Proof. Suppose that A is (1,2)*-dgpclosed set in a bitopological space (X,t,,T,) and
AcBc (1,2)*-pcl(A). Let Bc U and U is (1,2)*-8 open in X. Since AcB and
Bc U, we have Ac U. Since Ais (1,2)*-0gpclosed set, (1,2)*-pcl(A)c U. Also since
B (1,2)*-pel(A), (1,2)*-pel(B) < (1,2)*-pel [(1,2) *- pel(A)] <(1,2)*-pel(A) < U.
Therefore Bis (1,2)*-0gp closed.

Remark 4.2. Union of any two (1,2)*-dgpclosed sets in a bitopological space (X,t,,T,)
need not be (1,2)*-dgpclosed set as shown in the following example.

Example 4.3. Let X={a,b,c,d,e}, 1, ={¢,{a, b}, {a,b,c,d}, X} and t, ={0, {c,d}, X}.
Then {a} and {b} are two (1,2)*-0gp closed sets in X. But the union of {a} and {b} are
{a,b} isnot (1,2)*-dgpclosed in X.

Remark 4.4. Intersection of any two (1,2)*-Ogpclosed sets in a bitopological space
(X,t,,7,) need not be (1,2)*-dgpclosed set as shown in the following example.

Example 4.5. Let X={a,b,c,d, e}, , ={0,{b},{d},{b,d},{a,b,c,d},X} and
T, ={0,{b},{d},{e},{b,e},{b,d},{d, e}, {b,d,e}, X}. Then {a,b,d} and {b,c,d} are two
(1,2) *-dgpclosed sets in X. But the intersection of {a, b,d} and {b,c,d} are {b,d} is not
(1,2)*-dgpclosed in X.

Theorem 4.6. Let A be a (1,2)*-dgpclosed set in X if and only if (1,2)*-pcl(A)-A
contains no non empty (1,2)*-38 closed set.
Proof. Suppose that (1,2)*-Ogpclosed set in X. Let F be (1,2)*-6 closed and
Fc(1,2)*-pcl(A)- A, then Fc (1,2)*-pcl(A) and Fc X -A implies Ac X -F. Since F
is (1,2)*-8closed, then X-F is (1,2)*-8 open containing A, it follows that
(1,2)*-pcl(A)c X-F and thus FcX-[(1,2)*-pcl(A)]. This implies that
FNF <{X-(1,2)*-pcl(A)} N {(1,2) *-pcl(A)} =(1,2) *-pcl(p)and F= ¢ . Hence
(1,2)*-pcl(A) - A contains no non empty (1,2)*-38 closed set. Conversely, suppose that
(1,2)*-pcl(A)-A contains no non empty (1,2)*-8 closed set. Let Ac U and U is
(1,2)*-8 open in X. Suppose that (1,2)*-pcl(A)z U, then (1,2)*-pcl(A)NU° =¢ .
Since Ac U U c A" Then (1,2)*-pcl(A)NU° < (1,2) *-pcl(A)NA° =
(1,2)*-pcl(A)- A.Then (1,2)*-pcl(A)NU° is (1,2)*-8 closed in X. Which is
contradiction, therefore (1,2)*-pcl(A)c U. Hence A is (1,2)*-0gpclosed in X.
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Theorem 4.7. If A < X is both (1,2)*-8 open and (1,2)*-dgpclosed, then A is (1,2)*-
pre closed in X.

Proof. Let A be (1,2)*-6 open and (1,2)*-dgp closed set in X, then (1, 2)*- pcl(A) < A.
Always A < (1,2)*-pcl(A). Then (1,2)*-pcl(A)=A and hence A is (1,2) *- pre closed.

Theorem 4.8. A set A be (1,2)*-0gpclosed in X. Then A is (1, 2)* - preclosed if and only
if (1,2)*-pcl(A)-A is (1,2)*-5 closed set.

Proof. Suppose that A is (1,2)*-dgpclosed in X and A is (1,2)*-pre-closed. Since A is
(1,2) *-pre-closed, (1,2)*-pcl(A)=A. Then (1,2)*-pcl(A)-A=¢ 1is (1,2)*- closed.
Conversely, suppose that A is (1,2)*-0gpclosed and (1,2)*-pcl(A)-Ais (1,2)*-6
closed. Since A'is (1,2)*-dgp closed, by theorem 4.6, (1,2)*-pcl(A) - A contains no non
empty (1,2)*-8 closed set. Since (1,2)*-pcl(A)-A is itself (1,2)*-8 closed,
(1,2)*-pcl(A)- A =¢. Then (1,2)*-pcl(A)=A. Hence A is (1, 2)* - pre-closed.

Theorem 4.9. If A is (1,2)*-0gpclosed in X and AcBc (1,2)*-pcl(A), then
(1,2)*-pcl(B) - B contains no non empty (1,2)*-8 closed set.

Proof. Let Abe (1,2)*-dgpclosedin Xand A cBc (1,2)*-pcl(A). Then by theorem 4.1,

Bis (1,2)*-0gpclosed. Again by theorem 4.6, (1,2)*-pcl(B)-B contains no non empty

(1, (1,2)*-8 closed set.

5 (1,2)*-8gpOpen Sets

Definition 5.1. A subset A of a bitopological space (X,t,,7,) is called (1,2)*-delta
generalized pre-open set (briefly (1,2)*-0gpopen) if A€ is (1,2)*-0gpclosed. The family
of all (1,2)*-dgpopen sets in a bitopological space X is denoted by 8GPO(X) .

Example 5.2. Let X={ab,c},t, ={¢,{a},X} and rt,={0,{b},{a,b}, X}, then
(1,2) *-3GPO(X) = {$ , {a}, {b}, {a, b}, X}.

Theorem 5.3. A subset A is (1,2)*-0gpopen if and only if F < (1,2)*-pint(A), whenever
Fc A andFis (1,2)*-6 closed.

Proof. Let A be (1,2)*-0gpopen. Then A®is (1,2)*-0gpclosed. Suppose F— A and F is
(1,2)*-8 closed. Then F° is (1,2)*-8 openand A° < F°. Since A° is (1,2)*-dgpclosed,
(1,2)*-pcl(A°)cF°.  Also since  (1,2)*-pcl(A°)={(1,2)*-pint(A)}°,{(1,2)*-
pint(A) }, {(1,2) *-pint(A) }* cF°. Hence Fc(1,2)*-pint(A). Conversely, Suppose
Fc (1,2)* -pint(A),whenever Fc Aand F is (1,2)*-8 closed. Then A° < F®and F° is
(1,2)*-8 open. Take U=F°, since Fc(1,2)*-pint(A), {(1,2)*-pint(A)}° cF° =U.
Also since (1,2)*-pcl(A°)={(1,2)*-pint(A)}°, (1,2) *-pcl(A°)cU. Then A° is

(1,2)*-dgpclosed. Therefore A is (1,2)*-0gpopen.

Theorem 5.4. A set A is (1,2)*-Ogpclosed in X if and only if (1,2)*-pcl(A)-A is
(1,2)*-0gp open.
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Proof. Suppose that A is (1,2)*-0gpclosed in X. Let S be a (1,2)*-0 closed and
S <(1,2)*-pcl(A)-A. Since Ais (1,2)*-dgpclosedin X, (1,2)*-pcl(A)- A contains no
non empty (1,2)*-8 closed set. Since S <(1,2)*-pcl(A)- A,
S=¢ < (1,2)*-pint[ (1,2)*-pcl(A)- A]l. Then (1,2)*-pcl(A)-Ais (1,2)*-0gpopen.
Conversely, Suppose that (1,2)*-pcl(A)-A is (1,2)*-Ogpopen. Let AcU and U is
(1,2)*-5 open. Since AcU, U‘cA”. Therefore  (1,2)*-pcl(A)N U =
(1,2)*-pcl(A)- A. Since Uis (1,2)*-0 openin X, U is (1,2)*-5 closed in X . Also since
(1,2)*-pcl(A) is (1,2)*-d closed in X and U‘is (1,2)*-d closed in X , [(1,2)*-
pcl(A)]NU° is (1,2)*-8 closed in X .Since(1,2)*-pcl(A)-A is (1,2)*-dgp open,
[(1,2)*-pel(A) ] U° < (1,2)*-pint[ (1,2)*-pel(A)- A] = (1, 2)*- pint[ (1,2) *- pcl(A)
(A°)]=¢. Then (1,2)*-pcl(A)c U. Hence A'is (1,2)*-dgpclosed.
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