Journal or Po 0		DRIGINAL RESEARCH PAPER	Mathematics
Indian	PARTPET (1	,2)*-δgp Closed Sets in Bitopological Spaces	KEY WORDS: (1,2)*-δgp closed sets,(1,2)*-δgp open sets and (1,2)*-δgp open.
B. Meera Devi		Assistant Professor, Department of Mathematics, Sri S.R.N.M.College Sattur-626 203, Tamil Nadu, India	
P. Subbulakshmi		PG and Research Department of Mathematics, Sri S.R.N.M.College, Sattur-626 203, Tamil Nadu, India.	
ABSTRACT	The aim of this paper is to introduce the concepts of $(1,2)\delta gp$ *- closed sets. This set placed between $(1,2)\delta gp$ *- pre-closed and $(1,2)\delta gp$ *-closed sets. Also we discussed the relationship between this type of closed set and other existing closed sets in bitopological spaces. Also we introduce new class of open sets namely $(1,2)\delta gp$ *-open sets. We obtain some of their basic properties.		

1 Introduction

In 1963, Kelley [4] initiated the study of bitopological spaces. A nonempty set X equipped with two topological spaces τ_1 and τ_2 is called a bitopological spaces and is denoted by (X,τ_1,τ_2) . Fukutake [3] introduced generalized closed sets in bitopological space. M. Lellis Thivagar and O.Ravi [7] introduced a new type of generalized sets called $(1,2)^*$ -semi generalized closed sets and a new class of generalized functions called $(1,2)^*$ -semi generalized continuous maps in 2006. S.S. Benchalli and J.B.Toranagatti [1] introduced delta generalized pre-closed sets in topological space. In this paper, we introduced the new concepts of $(1,2)^*$ - δgp closed sets and $(1,2)^*$ - δgp open sets and study their basic properties in bitopological spaces.

2 Preliminaries

Throughout this paper (X, τ_1, τ_2) (or briefly X) represent bitopological spaces on which no separation axioms are assumed unless otherwise mentioned.

Definition 2.1. [8] A subset B of a bitopological space (X, τ_1, τ_2) is called $\tau_1 \tau_2$ – open if $B = U_1 \bigcup U_2$ where $U_1 \in \tau_1$ and $U_2 \in \tau_2$. The complement of $\tau_1 \tau_2$ – open is called $\tau_1 \tau_2$ – closed.

Remark 2.2. [8] $\tau_1 \tau_2$ – open X subset of need not necessarily from a topology.

Definition 2.3. [8] A subset A of a bitopological space (X,τ_1,τ_2) is called (i) The $\tau_1\tau_2$ -closure of A, denoted by $\tau_1\tau_2$ -cl(A) is defined by $\tau_1\tau_2$ -closure (A)= $\bigcap \{F/A \subseteq F \text{ and } F \text{ is } \tau_1\tau_2 - \text{closed} \}$. (ii) The $\tau_1\tau_2$ -interior of A, denoted by $\tau_1\tau_2$ -int(A) is defined by $\tau_1\tau_2$ -interior (A)= $\bigcup \{F/A \subseteq F \text{ and } F \text{ is } \tau_1\tau_2 - \text{open} \}$.

Definition 2.4. A subset A of a bitopological space (X,τ_1,τ_2) is called (i) $(1,2)^*$ -pre-open [8] if A $\subseteq \tau_1\tau_2$ - int $(\tau_1\tau_2$ - cl(A))and $(1,2)^*$ -pre-closed if $\tau_1\tau_2$ - cl $(\tau_1\tau_2$ - int(A)) \subseteq A.

www.worldwidejournals.com

27

(ii) $(1,2)^* - b$ open [5] if $A \subseteq (\tau_1 \tau_2 - \operatorname{cl}(\tau_1 \tau_2 - \operatorname{int}(A))) \bigcup (\tau_1 \tau_2 - \operatorname{int}(\tau_1 \tau_2 - \operatorname{cl}(A)))$ and $(1,2)^* - b$ closed if $(\tau_1 \tau_2 - \operatorname{cl}(\tau_1 \tau_2 - \operatorname{int}(A))) \cap (\tau_1 \tau_2 - \operatorname{int}(\tau_1 \tau_2 - \operatorname{cl}(A))) \subseteq A$.

(iii) (1,2)*-regular-open [11] if $A = \tau_1 \tau_2 - int(\tau_1 \tau_2 - cl(A))$ and (1,2)*- regular-closed if $A = \tau_1 \tau_2 - cl(\tau_1 \tau_2 - int(A))$.

The $(1,2)^*$ -pre-closure of a subset A of X, denoted by $(1,2)^*$ -pcl(A) is the intersection of all $(1,2)^*$ -pre-closed sets containing A. The $(1,2)^*$ -pre-interior of a subset A of X, denoted by $(1,2)^*$ -pint(A) is the union of $(1,2)^*$ -pre-open sets contained in A.

Definition 2.5. A subset A of a bitopological space (X, τ_1, τ_2) is called

(i) $(1,2)^*$ - generalized closed set (briefly $(1,2)^*$ -g closed) [10] if $\tau_1\tau_2$ -cl(A) $\subseteq U$ whenever A $\subseteq U$ and U is $\tau_1\tau_2$ - open in X.

(ii) (1, 2)*- generalized b -closed set (briefly (1, 2)*-gb closed) [12] if $\tau_1 \tau_2$ - bcl(A) $\subseteq U$ whenever A $\subseteq U$ and U is $\tau_1 \tau_2$ - open in X.

(iii) (1, 2)*- generalized pre-closed set (briefly (1, 2)*- gp closed) [13] if $\tau_1 \tau_2$ - pcl(A) $\subseteq U$ whenever A $\subseteq U$ and U is $\tau_1 \tau_2$ - open in X.

(iv) (1, 2)*- generalized pre regular closed set (briefly (1, 2)*-gpr closed) [9] if $\tau_1\tau_2$ -pcl(A) Uwhenever A U and U is (1, 2)*-regular open in X.

The complement of the above mentioned closed sets are their respective open sets.

3 (1,2)*-δgp **Closed Sets**

We introduce the following definitions.

Definition 3.1. The $(1,2)^*-\delta$ interior of a subset A of X is the union of all $(1,2)^*$ -regular open set of X contained in A and is denoted by $(1,2)^*-\delta$ int(A). The subset A is called $(1,2)^*-\delta$ open if $A = (1,2)^*-\delta$ int(A), i.e. a set is $(1,2)^*-\delta$ open if it is the union of $(1,2)^*$ -regular open sets. The complement of a $(1,2)^*-\delta$ open is called $(1,2)^*-\delta$ closed. Alternatively, a set $A \subseteq (X,\tau_1,\tau_2)$ is called $(1,2)^*-\delta$ closed if $A = (1,2)^*-\delta$ cl(A), where $(1,2)^*-\delta$ cl(A)={ $x \in X: \tau_1\tau_2 - int(\tau_1\tau_2 - cl(A)) \cap A \neq \phi$, $U \in \tau_1\tau_2, x \in U$ }.

Definition 3.2. $(1,2)^*-\delta$ generalized closed set (briefly $(1,2)^*-\delta g$ closed) if $\tau_1\tau_2 - \delta cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $\tau_1\tau_2$ - open in X.

Definition 3.3. A subset A of a bitopological space (X,τ_1,τ_2) is called $(1,2)^*$ - delta generalized pre-closed (briefly, $(1,2)^*$ - δgp closed) if $(1,2)^*$ -pcl(A) $\subseteq U$ whenever A $\subseteq U$ and U is $(1,2)^*$ - δ open in X. The family of all $(1,2)^*$ - δgp closed sets in a bitopological space X is denoted by $\delta GPC(X)$.

Example 3.4. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, \{a\}, X\}$ and $\tau_2 = \{\phi, \{b\}, \{a, b\}, X\}$, then $(1, 2)^* - \delta GPC(X) = \{\phi, \{c\}, \{b, c\}, \{a, c\}, X\}$.

Theorem 3.5. Every $(1,2)^*$ -closed set is $(1,2)^*$ - δgp closed set.

Example 3.7. Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{b\}, X\}$ and $\tau_2 = \{\phi, \{a\}, \{a, c\}, X\}$. Then $\{a, b\}$ is $(1, 2)^*$ - δ gp closed but not $(1, 2)^*$ -closed.

Theorem 3.8. Every $(1,2)^*$ -pre-closed set is $(1,2)^*$ - δ gp closed set. Proof. Suppose that A is $(1,2)^*$ -pre-closed. Let $A \subseteq U$ and U is $(1,2)^*$ - δ open in X. Since A is $(1,2)^*$ -pre-closed, $(1,2)^*$ -pcl(A) = A. Hence $(1,2)^*$ -pcl(A) $\subseteq U$. Therefore A is $(1,2)^*$ - δ gp closed.

Remark 3.9. The converse of the above theorem is not true in general as shown in the following example.

Example 3.10. Let $X = \{a, b, c, d\}$, $\tau_1 = \{\phi, \{b\}, \{a, b\}, \{a, b, c\}, X\}$ and $\tau_2 = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Then $\{a, b, d\}$ is $(1, 2)^*$ - δgp closed but not $(1, 2)^*$ -preclosed.

Theorem 3.11. Every $(1, 2)^*$ -gp closed set is $(1, 2)^*$ - δ gp closed set.

Proof. Suppose that A is $(1,2)^*$ -gp closed. Let $A \subseteq U$ and U is $(1,2)^*-\delta$ open in X. Suppose A is not $(1,2)^*-\delta$ gp closed, then $(1,2)^*-pcl(A) \not\subset U$. Since every $(1,2)^*-\delta$ open set is $\tau_1\tau_2$ -open, $(1,2)^*-pcl(A) \not\subset U$. and U is $\tau_1\tau_2$ -open. This contradicts that A is $(1,2)^*-\delta$ gp closed.

Remark 3.12. The converse of the above theorem is not true in general as shown in the following example.

Example 3.13. Let $X = \{a, b, c, d\}$, $\tau_2 = \{\phi, \{b\}, \{a, b, c\}, X\}$ and $\tau_2 = \{\phi, \{a\}, \{a, b\}, X\}$. Then $\{a, c\}$ is $(1, 2)^*$ - δ gp closed but not $(1, 2)^*$ -gp closed.

Theorem 3.14. Every $(1,2)^*$ - δ gp closed set is $(1,2)^*$ -gpr closed set.

Proof. Suppose that A is $(1,2)^*$ - δ gp closed. Let $A \subseteq U$ and U is $(1,2)^*$ - regular open in X. Suppose A is not $(1,2)^*$ - gpr closed, then $(1,2)^*$ - pcl(A) $\not\subset U$ and U is $(1,2)^*$ - regular open. Since every $(1,2)^*$ - regular open set is $(1,2)^*$ - δ open in X, $(1,2)^*$ - pcl(A) $\not\subset U$ and U is $(1,2)^*$ - d u and U is $(1,2)^*$ - d u and U is $(1,2)^*$ - δ open. This contradicts that A is $(1,2)^*$ -gpr closed.

Remark 3.15. The converse of the above theorem is not true in general as shown in the following example.

Example 3.16. Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{b\}, \{a, b\}, \{b, c\}, X\}$ and $\tau_2 = \{\phi, \{a\}, \{a, c\}, X\}$. Then $\{a, b\}$ is $(1, 2)^*$ -gpr closed but not $(1, 2)^*$ - δ gp closed.

Remark 3.17. The following example shows that $(1,2)^*$ - δ gp closed set is independent of $(1,2)^*$ -b closed and $(1,2)^*$ -gb closed sets.

Example 3.18. Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, X\}$ and $\tau_2 = \{\phi, \{c\}, \{a, c\}, X\}$. Then $\{a\}$ is $(1, 2)^*$ -gb closed and $(1, 2)^*$ -b closed but not $(1, 2)^*$ -Sgp closed.

Example 3.19. Let $X = \{a, b, c, d\}$, $\tau_1 = \{\phi, \{a\}, \{a, b, c\}, X\}$ and $\tau_2 = \{\phi, \{b\}, \{a, b\}, X\}$. Then $\{a, b, c\}$ is $(1, 2)^*$ - δgp closed but not $(1, 2)^*$ -b closed and $(1, 2)^*$ -gb closed.

4 properties of (1,2)*-δgp closed sets

Theorem 4.1. If A is $(1,2)^*$ - δgp closed set in a bitopological space (X,τ_1,τ_2) and $A \subseteq B \subseteq (1,2)^*$ -pcl(A), then B is $(1,2)^*$ - δgp closed.

Proof. Suppose that A is $(1,2)^*$ - δ gp closed set in a bitopological space (X,τ_1,τ_2) and $A \subseteq B \subseteq (1,2)^*$ -pcl(A). Let $B \subseteq U$ and U is $(1,2)^*$ - δ open in X. Since $A \subseteq B$ and $B \subseteq U$, we have $A \subseteq U$. Since A is $(1,2)^*$ - δ gp closed set, $(1,2)^*$ -pcl(A) $\subseteq U$. Also since $B \subseteq (1,2)^*$ -pcl(A), $(1,2)^*$ -pcl(B) $\subseteq (1,2)^*$ -pcl[$(1,2)^*$ -pcl(A)] $\subseteq (1,2)^*$ -pcl(A) $\subseteq U$. Therefore B is $(1,2)^*$ - δ gp closed.

Remark 4.2. Union of any two $(1,2)^*$ - δ gp closed sets in a bitopological space (X,τ_1,τ_2) need not be $(1,2)^*$ - δ gp closed set as shown in the following example.

Example 4.3. Let $X = \{a, b, c, d, e\}$, $\tau_1 = \{\phi, \{a, b\}, \{a, b, c, d\}, X\}$ and $\tau_2 = \{\phi, \{c, d\}, X\}$. Then $\{a\}$ and $\{b\}$ are two $(1, 2)^*$ - δ gp closed sets in X. But the union of $\{a\}$ and $\{b\}$ are $\{a, b\}$ is not $(1, 2)^*$ - δ gp closed in X.

Remark 4.4. Intersection of any two $(1,2)^*$ - δ gp closed sets in a bitopological space (X,τ_1,τ_2) need not be $(1,2)^*$ - δ gp closed set as shown in the following example.

Example 4.5. Let $X = \{a, b, c, d, e\}, \tau_1 = \{\phi, \{b\}, \{d\}, \{b, d\}, \{a, b, c, d\}, X\}$ and $\tau_2 = \{\phi, \{b\}, \{d\}, \{e\}, \{b, e\}, \{b, d\}, \{d, e\}, \{b, d, e\}, X\}$. Then $\{a, b, d\}$ and $\{b, c, d\}$ are two $(1, 2)^*$ - δ gp closed sets in X. But the intersection of $\{a, b, d\}$ and $\{b, c, d\}$ are $\{b, d\}$ is not $(1, 2)^*$ - δ gp closed in X.

Theorem 4.6. Let A be a $(1,2)^*$ - δ gp closed set in X if and only if $(1,2)^*$ -pcl(A) - A contains no non empty $(1,2)^*$ - δ closed set.

Proof. Suppose that $(1,2)^*$ - δ gp closed set in X. Let F be $(1,2)^*$ - δ closed and $F \subseteq (1,2)^*$ -pcl(A) - A, then $F \subseteq (1,2)^*$ -pcl(A) and $F \subseteq X$ - A implies $A \subseteq X$ - F. Since F is $(1,2)^*$ - δ closed, then X - F is $(1,2)^*$ - δ open containing A, it follows that $(1,2)^*$ -pcl(A) $\subseteq X$ - F and thus $F \subseteq X - [(1,2)^* - pcl(A)]$. This implies that $F \cap F \subseteq \{X - (1,2)^* - pcl(A)\} \cap \{(1,2)^* - pcl(A)\} = (1,2)^* - pcl(\phi)$ and $F \subseteq \phi$. Hence $(1,2)^* - pcl(A) - A$ contains no non empty $(1,2)^* - \delta$ closed set. Conversely, suppose that $(1,2)^* - pcl(A) - A$ contains no non empty $(1,2)^* - \delta$ closed set. Let $A \subseteq U$ and U is $(1,2)^* - \delta$ open in X. Suppose that $(1,2)^* - pcl(A) \cap U^c \subseteq (1,2)^* - pcl(A) \cap U^c \neq \phi$. Since $A \subseteq U, U^c \subseteq A^c$. Then $(1,2)^* - pcl(A) \cap U^c \subseteq (1,2)^* - pcl(A) \cap A^c = (1,2)^* - pcl(A) - A$. Then $(1,2)^* - pcl(A) \cap U^c$ is $(1,2)^* - \delta$ closed in X. Which is contradiction, therefore $(1,2)^* - pcl(A) \subseteq U$. Hence A is $(1,2)^* - \delta$ closed in X.

Theorem 4.7. If $A \subseteq X$ is both $(1,2)^* - \delta$ open and $(1,2)^* - \delta$ gp closed, then A is $(1,2)^* - \beta$ pre closed in X.

Proof. Let A be $(1, 2)^* - \delta$ open and $(1, 2)^* - \delta$ gp closed set in X, then $(1, 2)^* - pcl(A) \subseteq A$. Always $A \subseteq (1, 2)^* - pcl(A)$. Then $(1, 2)^* - pcl(A) = A$ and hence A is $(1, 2)^* - pre$ closed.

Theorem 4.8. A set A be $(1,2)^*$ - δ gp closed in X. Then A is $(1,2)^*$ -preclosed if and only if $(1,2)^*$ -pcl(A) - A is $(1,2)^*$ - δ closed set.

Proof. Suppose that A is $(1,2)^*$ - δ gp closed in X and A is $(1,2)^*$ -pre-closed. Since A is $(1,2)^*$ -pre-closed, $(1,2)^*$ -pcl(A) = A. Then $(1,2)^*$ -pcl(A) - A = ϕ is $(1,2)^*$ - δ closed. Conversely, suppose that A is $(1,2)^*$ - δ gp closed and $(1,2)^*$ -pcl(A) - A is $(1,2)^*$ - δ closed. Since A is $(1,2)^*$ - δ gp closed, by theorem 4.6, $(1,2)^*$ -pcl(A) - A contains no non empty $(1,2)^*$ - δ closed set. Since $(1,2)^*$ -pcl(A) - A is itself $(1,2)^*$ - δ closed, $(1,2)^*$ -pcl(A) - A = ϕ . Then $(1,2)^*$ -pcl(A) = A. Hence A is $(1,2)^*$ -pre-closed.

Theorem 4.9. If A is $(1,2)^*$ - δ gp closed in X and $A \subseteq B \subseteq (1,2)^*$ -pcl(A), then $(1,2)^*$ -pcl(B)-B contains no non empty $(1,2)^*$ - δ closed set.

Proof. Let A be $(1,2)^*$ - δ gp closed in X and A \subseteq B \subseteq $(1,2)^*$ -pcl(A). Then by theorem 4.1, B is $(1,2)^*$ - δ gp closed. Again by theorem 4.6, $(1,2)^*$ -pcl(B) - B contains no non empty $(1, (1,2)^*$ - δ closed set.

5 (1,2)*-δgp**Open Sets**

Definition 5.1. A subset A of a bitopological space (X,τ_1,τ_2) is called $(1,2)^*$ -delta generalized pre-open set (briefly $(1,2)^*$ - δ gp open) if A^c is $(1,2)^*$ - δ gp closed. The family of all $(1,2)^*$ - δ gp open sets in a bitopological space X is denoted by δ GPO(X).

Example 5.2. Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, X\}$ and $\tau_2 = \{\phi, \{b\}, \{a, b\}, X\}$, then $(1, 2) * -\delta GPO(X) = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}.$

Theorem 5.3. A subset A is $(1,2)^*$ - δ gp open if and only if $F \subseteq (1,2)^*$ -pint(A), whenever $F \subseteq A$ and F is $(1,2)^*$ - δ closed.

Proof. Let A be $(1,2)^*$ - δ gp open. Then A^c is $(1,2)^*$ - δ gp closed. Suppose $F \subseteq A$ and F is $(1,2)^*$ - δ closed. Then F^c is $(1,2)^*$ - δ open and A^c \subseteq F^c. Since A^c is $(1,2)^*$ - δ gp closed, $(1,2)^*$ -pcl(A^c) \subseteq F^c. Also since $(1,2)^*$ -pcl(A^c) = { $(1,2)^*$ -pint(A)}^c, { $(1,2)^*$ -pint(A)}^c \subseteq F^c. Hence $F \subseteq (1,2)^*$ -pint(A). Conversely, Suppose $F \subseteq (1,2)^*$ -pint(A), whenever $F \subseteq A$ and F is $(1,2)^*$ - δ closed. Then A^c \subseteq F^c and F^c is $(1,2)^*$ - δ open. Take $U = F^c$, since $F \subseteq (1,2)^*$ -pint(A), { $(1,2)^*$ -pint(A)}^c \subseteq F^c = U. Also since $(1,2)^*$ -pcl(A^c) = { $(1,2)^*$ -pint(A)}^c \subseteq U. Then A^c is $(1,2)^*$ - δ gp closed. Therefore A is $(1,2)^*$ - δ gp open.

Theorem 5.4. A set A is $(1,2)^*$ - δ gp closed in X if and only if $(1,2)^*$ -pcl(A)-A is $(1,2)^*$ - δ gp open.

PARIPEX - INDIAN JOURNAL OF RESEARCH

Proof. Suppose that A is $(1,2)^*$ -Spclosed in X. Let S be a $(1,2)^*$ -S closed and $S \subset (1,2)^* - pcl(A) - A$. Since A is $(1,2)^* - \delta gp closed in X$, $(1,2)^* - pcl(A) - A$ contains no Since $S \subset (1,2)^* - pcl(A) - A$, $(1,2)^{*}-\delta$ closed set. non empty $S = \phi \subset (1,2)^* - pint[(1,2)^* - pcl(A) - A]$. Then $(1,2)^* - pcl(A) - A$ is $(1,2)^* - \delta gp$ open. Conversely, Suppose that $(1,2)^* - pcl(A) - A$ is $(1,2)^* - \delta gp$ open. Let $A \subseteq U$ and U is $(1,2)^*-\delta$ Since $A \subset U, U^{c} \subset A^{c}.$ Therefore $(1, 2)^* - pcl(A) \cap U^c =$ open. $(1,2)^*$ -pcl(A)-A. Since U is $(1,2)^*$ - δ open in X, U^c is $(1,2)^*$ - δ closed in X. Also since $(1,2)^* - pcl(A)$ is $(1,2)^* - \delta$ closed in X and U^c is $(1,2)^* - \delta$ closed in X, $[(1,2)^* - \delta]$ $pcl(A)] \cap U^{c}$ is $(1,2)^{*}-\delta$ closed in X. Since $(1,2)^{*}-pcl(A)-A$ is $(1,2)^{*}-\delta gp$ open, $[(1,2)^* - pcl(A)] \cap U^c \subset (1,2)^* - pint[(1,2)^* - pcl(A) - A] = (1,2)^* - pint[(1,2)^* - pcl(A)]$ (A^{c})] = ϕ . Then (1, 2)*-pcl(A) \subset U. Hence A is (1, 2)*- δ gp closed.

References

- Benchalli.S and Toranagatti.B, "Delta Generalized Pre-Closed Sets in Topological [1] Spaces", International Journal of contemporary and Mathematical Sciences, Vol. 11, no. 6, 281-292
- Edward Samuel A and D. Balan, "ij -Generalized Delta Semi Closed sets", Annuals of Pure and Applied Mathematics Vol. 10, No.2, 2015, 255-266. [2]
- Fukutake.T, "On generalized closed sets in bitopological spaces", Bull. Fukuoka [3] Uni Ed Part III, 35(1986), 19-28.
- Kelley.J.C, "Bitopological Spaces", Proc. London math. Soc., 13(1963), 71-89. Lellis Thivagar.M, Meera Devi.B, "Bitopological B -Open sets", International [5] Journal of Algorithms, Computing and Mathematics, Volume 3, Number 3, August 2010
- Lellis Thivagar.M, Meera Devi.B and Hatir.E, "g∧δ-closed set in Topological Spaces [6]
- Continuous Maps ", Well South and Mark, geo Closed Set in Populogical Spaces ", General Mathematics Notes, Vol. 1(2), 2010, 17-25. Lellis Thivagar.M and Ravi.O, "A Bitopological -*2) (1,Semi generalized Continuous Maps ", Bull. Malays. Math. Sci. Soc., (2) 29(1) (2006), 7988. Long.E. P. and Herington.L. L, "Basic Properties of Regular Closed Maps", Rend. Circl Mathematics (2014) (2 [7]
- [8] Cir. Mat. Palermo, 27(1978), 20-28. Raja Rajeshwari.R, Lellis Thivagar.M, Margaret nirmala.M and Ekici.E, "A note
- [9] orgpr - *2) (1, -closed set", Math. Maced,vol. 4, 2006, 33-42, [10] Ravi. Oa and Lellis Thivagar.M and Jin, "Remarks on extensions of g -*2) (1,-closed mapping in Bitopological spaces", Archimedes J.Math. 1(2), pp. 177-187, 2011.
- [11] Ravi.O and Lellis Thivagar.M, Kayathiri.K and Jopseph Isreal.M, "Decompositions of rg *2) (1,-continuous maps in bitopological spaces", Antarctica Journal Math.6(1)(2009),13-23.
 [12] Sreeja.D and Janaki,C, "ON gp∏-*)2,1(-closed sets", International Journal of
- Computer Applications Volume 42- No.5, March, pp 0975 8887, 2012. [13] TantawayEl.A.O and Abu.DoniaM.H, "Generalized Separation Axioms in
- Bitopological spaces", The Arab J.Sci.Eng., 30(1A), 117-129, 2005