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ABSTRACT

In this paper, we proved an existence theorem for a quadratic integral equation of fractional order in partially ordered normed
linear space. Also provedthat the solution of this integral equation is locally attractive. Furthermore, we present an example.

1. Introduction:

The theory of integral equations is rapidly developing with the help of several tools of
functional analysis, fixed point theoryand topology. In particular integral equations have many useful
applications in the problem of the real world. The origin of the nonlinear integral equations lies in
the work of Chandrasekhar [1] on radiative heat transfer in thermodynamics. Now a days it has
become clear that such quadratic integral equations are applicable to theory of kinetic theory of gases,
theory of neutron transport, queuing theory, radiative transfer, population dynamics and other. The
previous methods for proving the existence results for such equations were much cumbersome, so
this topic is not developed much during the initial stage of investigation. Many authors studied the
existence the solution of nonlinear quadratic integral equations for several classes (see[6,10,12]) and
their references, but the formulation of functional analytic methods, in particular, fixed point theory
in partially ordered normed linear space, there is a considerable development of the nonlinear integral
equations in recent years (see Dhage [3,4]) and the references therein.

The monotonic solution of a quadratic integral equation of fractional order
_ Ftx@®) ctu(sx(s)
x(t) = a(t) + =) Jo o ds (1.1)
has been studied in [10]. The main tool used in proof is the technique associated with the hausdorff
measure of non-compactness.

In this paper, we investigate the existence the solution for a quadratic integral equation of fractional
order (FQIE) in partially ordered normed linear space by using hybrid fixed point theorem due to
B.C.Dhage.

2(0) = a6, 2(O)p(@) + L2 (12020 g (12)

forall t € R,, and & € (0,1).

Where the function p: R, = R, is continuous, nonnegative,nondecreasing and bounded on R,. The
function R, XxR->R , iR, XxR->R,v:R, XxR—-> R are continuous, nonnegative
nondecreasing with respect to both variables t and x separately.

The article is organized as follows, in section 2 we give some preliminaries and fixed point theorem
that will be used in subsequent part of paper. In section 3 we establish the main result and we provide
an example to illustrate our result.

II. Preliminaries

In this section we give the definitions, notation, hypothesis and preliminary tools, which will be used
in the sequel.
\ J
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Definition2.1[g: Let E be linear space or real vector. We introduce a partial order < in E as below.
A relation in E is said to be partial order if it satisfies the following properties: let a, &, ¢, d € E and
A€ER.

1. Reflexivity:a < aVa € E,

2. Antisymmetry: a < 4 and & < a impliesa = &

3. Transitivity: @ < & and 4 < c impliesa < ¢

4. Order linearity: a < ¢ andc < d impliesa+c < & +d

The linear space E together with the partial order < becomes partially ordered vector
orlinear space. Two elements x and ¢ in a partially ordered linear space E are called comparable if
either the relation x < ¢ or ¢ < x holds. We introduce a norm ||. || in a partially ordered linear space
E so thatE becomes partially ordered normed linear space. If E is complete with respect to the metric
b defined by the above norm, then it is called partially ordered complete normed linear space.

It is known that E is regular if {x,, } is nondecreasing sequence in E such that x,, - x*as
n - o, then x,, < x*for all nelV.

A some details of an ordered Banach space and operator theoretic techniques are given in
the papers of Dhage [5], Lakshmikantham and Heikkild [10] and Heikkildand carl [9] and the also
references therein.

Definition2.2 [5]: A mapping G: E — E is called isotone or monotone nondecreasing if it preserves
the order relation<, that is ifx < ¢ = Gx < GyVx,y € E. Similarly G is called monotone non-
increasing ifx < y = Gx > Gy, Vx,4 € E. Finally G is called simply monotone if it is either
monotonic nondecreasing or monotonic nonincreasing.

Definition2.3 [B]: An operator G on a normed linear space E into itself is called compact if G(E) is
relatively compact subset of E.

G is called totally bounded if for any bounded subset S of E, G(S) is relatively compact subset of
E.If G is continuous and totally bounded, then it is called completely continuous on E.

Definition2.4: A totally ordered subset € of an ordered set (E, <) is called chain in E or A totally
ordered set is itself is a chain.

Definition2.5: A totally ordered set is a set and relation on the set that satisfy conditions of partial
order and comparability condition. A relation < is a total order on a set E if the following properties
hold.

1. Reflexivity:a < aVa € E,

2. Antisymmetry: a < 4 and & < a implies a = &

3. Transitivity: a < & and 4 < c impliesa < ¢

4. Comparability: for any a, & € E eithera < & ora > &
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The first three axioms are of partial order and last one is trichotomy law defines a total order.

Definition2.6 [5]: A mapping G: E — E is called partially continuous at a point b € E if for €>
036 > 0 such that ||Gx — Gb|| <€ whenever x is comparable to b and ||x — b|| < 8.G is called
partially continuous on E, if it is partially continuous at every point of it. It is clear that if G is partially
continuous on E, then it is continuous on every chain € contained in E.

Definitian 2.7[5]: An operator G on a partially normed linear space E into itself is called partially
bounded if G(€) is bounded for every chain € in E.

G is called uniformly partially bounded if all chains G(€) in E are bounded by a unique constant.
G is called partially compact if G(C) is relatively compact subset of E for all totally ordered set or
chains € in E.

G 1s called partially totally bounded if for any totally ordered and bounded subsets € of E, T(C€) is
relatively compact subset of E.

If G is partially continuous and partially totally bounded, then it is called partially completely
continuous on E.

Remark 2.1: Every compact mapping on a partially normed linear space is partially compact and
every partially compact mapping is totally bounded, but the reverse implication is not true.

Again every completely continuous mapping is partially completely continuous and every
partially completely continuous mapping is partially continuous and partially totally bounded
however the reverse implication may not true.

Definition2.8 [5]: The order relation < and the metric d on a non empty set E are said to be
compatible if {x, } is monotone that is monotone increasing or monotone decreasing sequences in E
and if subsequence {x,,; } of {x,,} converges to x* = the whole sequence {x,,} converges to x*.

Similarly, given a norml||. ||and the partially normed linear space (E, <, || ||) the order relation are
said to be compatible if < and the metric d defined through the norm ||. || are compatible.

The set of real numbers R with usual order relation < and the norm defined by absolute
value function has this property. Similarly R™ is the finite dimensional Euclidean space with usual
the standard norm and component wise order relation possesses the compatibility property. Similarly
every partially compact subset of the space C(R,, R) with usual order relation defined by x < g if
and only if x(t) < ¢(t) for all t € R, with usual standard supremum norm ||. || defined by ||x|| =
Supter, | (t)| are compatible.

Definition2.9 [6]: A mapping ¢: R, — R, is called dominating function or in short D-function if
it is an upper semicontinuous and monotonic nondecreasing function satisfies ¢(0) = 0.

Definition2.10 [5]: Let(E, <, ||. ||) be a partially ordered normed linear space. A mapping G: E - E
is called partially D- lipschitz or partially nonlinear D- lipschitz, if there exist an upper semi-
continuous nondecreasing function ¢: R, — R, such that

IGx — Gyl < ollx — »ll(2.1)
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For all comparable elements x,y € E where ¢(0) =0, if ¢(r) = kr,k > 0, then G is called
partially lipschitz with lipschitz constant k.

If k < 1, Gis called partially contraction with contraction constant k.
Finally G is called nonlinear D-contractionif it is nonlinear D- lipschitz with ¢(r) < r for r > 0.

Definition 2.115): Let (E,<,|.||) be a partially normed linear algebra. Denote E* =
{x € E|x = 6,} where 0 is zero element of E. and

K ={E* c E|luv € E*,Vu,v € E*}
The elements in set K are called the positive vectors in the normed linear algebra E.

lil. Existence Theory

Definition3.1[B]: Let (E, <, ||. ||) be a partially normed linear algebra. Denote E* =
{x € E|lx > 60,} where 0 is zero element of E. AndK = {E* c Eluv € Et,vu,v € E*}.

The elements in set K are called the positive vectors in the normed linear algebra E.
Lemma3.1[5]: If U;U,V,V, € K such that U; < V; and U, < V,thenU; U, <V, V,.

Lemma3.2 An operator G: E — E is said to be positive if the range R(G) of G is such that R(G) c
K for any two chains €; and €, in E denote

C,C, = {x = c1¢3,¢,Candc,C, ).

Theorem3.1 [5]: Let S be nonempty, partially bounded and closed subset of a regular partially
ordered complete algebra (E, <, ||. ||) such that the order relation < and the norm ||. || are compatible
in every compact chain Cof S. Let A, B: S — K and C: E — E be two nondecreasing operators, such
that

a) A and C are partially nonlinear D- Lipschitz with D-function ¢4 andg respectively.

b) B is partially continuous and compact

c¢) AxBx+ Cx € SVx €S,

d) Mey(r)+ oc(r) <r,r >0, where M = ||B(S)|| and

e) There exist an element x; € S such that x5 < Ax(Bx, + Cx, or x5 = Axy Bxy + Cx,

Then the operator equation AxBx + Cx = x has a solution x* in S and the sequence {x,} of
successive iterations defined by x,,; =Ax,Bx,+Cx,,n=0172,...... Converges
monotonically to x*.

Now Fractional Quadratic Integral Equation (FQIE) (6.1.1) will be investigated under the
following assumptions:

J€1) The function p: R, — R, is continuous, nonnegative, nondecreasing and bounded on R, with
bound P = sup;solp(t)].

JH2) The function f: R, X R = R is continuous, nonnegative, nondecreasing with bound F =
Supssolf (t, x)|, there exist a nondecreasing and bounded function £4(t): (0,%0) - R, with bound
||€4||such that
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[f(t2®) = f(t,4(®)] < a®)|2(t) — »©)I,
vVt € Riand x € R,.

H 3) The function q: R, X R — R is continuous, nonnegative, nondecreasing with bound Q =
SUPtso |q(t, x(t)) , there exist a nondecreasing and bounded function £¢(t): (0,0) = R, with bound

ll£¢|l such that |q(¢t, 2(t)) — q(t, ()| < tc(Ox(t) — »(O)|,Vt € R,.

H 4) The function v: R, X R = R is continuous, nonnegative, nondecreasing satisfying
v(t,x(t)) < h(t) where h: R, - R for Vt € R, and x € R,.

H's) The continuous function y: R, — R, defined by the formula

t h()

v =J; (tos)i£ IS

H ) There exist an element u € C(R,, R)such that

f(t, u(t)) t v(s, u(s)) S
r©  Jy G-9r

Remark 3.1: If the hypothesis (H'4) and (#'s) hold then there exist a constant K3, K, > 0 such

v(t) 1t h(s)
that 7, = sup;sg o) = SWPrz0 rf)fo T ds and

u(®) < q(t,u@®)p@® +

X, =PQ = suptzolp(t)||q(t,x(t))|. And the function g: R, X R - Rand y: R, - R, vanishes
at infinity.

V. Main Result:

Theorem4.1: Suppose that the assumption (H1)-(H ), and K ||l4 || + P|lécl| < 7, where r is a
positive real number. Then FQIE (1.2) has at least one solution x = x(t) which belongs to partially
ordered normed linear space and is nonnegative, nondecreasing on R,.

Proof:let(E, <, || ||) be a regular partially ordered complete normed linear space and define a subset
Sof (E, <, [I.IDas S ={x € (E,<,[.IDIllx]l < 3}

Where 3 satisfies the inequality FK; + K, < 3. Clearly Sbe nonempty, partially bounded and closed
subset of a regular partially ordered complete algebra(E, <, ||. ||).

Consider the chain € in S c E.
Define the operators A, B: S — S and C: E — E such that

A= £(t, () @.1)
1 cto(sx(s)
=@k e “2
C=q(t,x(®)p(®) (4.3)

Now the FQIE (1.2) is equivalent to the operator equation
x(t) = Ax(t)Bx(t) + Cx(t) 4.4)

Now we will show that the operators satisfy conditions of theorem (3.1)
L www.worldwidejournals.com | | 7 H
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Step |: The operators A, B and C are nondecreasingon E. Let x,4 € S such that x < ¢ then by
hypothesis we obtain

Ax(@®) = f(t,2(®) < f(t, @) < Ay,

1 (tu(s x(s)) - 1 (tu(s,4(s))
T@Jy C—9 " "T@ )y C-9)r

Bx(t) = ds < By(t)

and Cx(t) = q(t,x(t))p(t) < q(t,y(t))p(t) < Cx(t), forallt € R,
Thus the operators A, B and C are nondecreasing on S.
Step II: To show A and C are partially D- Lipschitz with Lipschitz function €4 and £ respectively.
|Az() - Ay ()] = |[f(t,2(®) — f(t, »(O)]
< C(O)]x(t) —y(t)], forall t € R,
Taking supremum over t € R, in above inequality, we obtain
IAx — Agll < [Ilallllx — %l V2,4 €S
Hence A is partially nonlinear D-Lipschitz on S with D-Lipschitz constant ||£]|.
Similarly |Cx(¢) — Cy (D] = [q(t, 2(®))p(®) — q(t, 4 (©O))p(©®)|
= Ip@I]q(t,2(®)) — q(t, »®))|
< Ple(t)|x(t) — y(t)|forallt € R,,
Taking supremum over t € R, in above inequality, we obtain
ICx — Cyll < Pllcclllle — »ll, vz, 4 €.

Thus A and C are partially nonlinear D-Lipschitz on S with D-Lipschitz constant ||£4|| and P||£¢]]
respectively.

Step lll: To show B is partially continuous and compact operator on S.
Firstly to show B is partially continuous operator on S.

Let {x,} be a sequence in a chain € in S c E converging to a point x, then by dominated
convergence theorem for all t € R,, we obtain

Then, lim,,_,,, Bx,,(t) = lim,,_,,, {Tlf) fot v((:i;(f? ds}

_ 1 to(sx(s)
T I(©) Y0 (t-s)1¢

= Bx(t),Vt € R,
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This shows that Bx,, converges to Bx point- wise on S.
Next to show that sequence {Bx,,} is a equicontinuous sequence in S.
Let t;,t, € R, be arbitrary with t; < t, then

t, v(sxn(s)) 1 ftl v(sxn(s))d |

|Bx/n(t2) an(tl)l = |F(f) 0 (t,—s)1- & S e 7o (¢,-s)1t- 13

Jy2(t2 = 95 v(s, 2, (9)ds

—r _fotz(tl _ S)f_lv(S,xn(s))ds
[NCED I CERONE

reé)|_ fotl(tl _ 5)5—11](5, xn(s))ds

= %) |fotz(t2 — $)§th(s)ds — f,7(t, — s)f-lh(s)ds|

re@ |f0tz(t1 - S)E_lh(s)ds — fotl(tl — S)f—lh(s)ds|

_ Il [ 2[Ct2 = )57 = (6 — 5)E]as|
< F(f) |ftz(t —S)f 1dS|

IRl (|[(ta=5)61"2  [(t1-5)61"2 (t,-5)1"2
<t 2] - 2] | o2}
—[(t2 — )% — (¢, — 0)¢] +|

= 12 [(tl — )5 — (t; — 0)5]
|_[(t1 — )5 — (¢, — t1)€]|
||h||51

{|tD% + (t1 — t2)% — @D + |- (6 — 2%}
—>0as ty > t;,,Vn €N

This shows that the Sequence {Bx,, } uniformly convergence on S.

By using property of uniform convergence that is uniform convergence imply continuity.

Hence B is partially continuous on S.

Step IV: To show B is partially compact operator on S, for this to show that B is uniformly bounded

and equicontinuous in S.

Let € be an arbitrary chain in E, then we show that B(€) is uniformly bounded and equicontinuous

setin S.

First we show that B(C®) is uniformly bounded set in S. Let x € € be arbitrary then

|Bx(t)| =

|L tv(sx(s))
)70 (t—s)1-¢
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1 ct]v(sx(s))]
RX¢P) fO (t-s)1=¢ ds

1 t h(s)

<t o ot ds

y@®

<t =% VteR,

Taking supremum over t, we obtain ||Bx|| < ¥;,Vx € €.
This shows that B(C®) is uniformly bounded set in S.
Now we will show that B(C)is equicontinuous set in S.

Let ty,t, € Rywith t; < t, then

t2 v(s,x(s)) s t (s, 2(s))

|Bx(t,) — Bx(t;)| = |F(5) (6 — )% r(g) (t; — s)1- = ds

t2
f (t; — 5)5v(s, 2(s))ds
< L 0
< t,
re —f (t1 — $)5 v(s, x(s))ds
0
23
1 f (t1 — $)5 v(s, x(s))ds
=" ..
re —j (¢, — $)5 (s, 2(s))ds
0

< %f) |f0t2(tz — )¢ 1h(s)ds — fotz(tl — S)f_lh(s)ds|
+%€) |f0t2(t1 — )5 1h(s)ds — fotl(tl - S)f_lh(s)ds|

< Il |ft2[(’52—5)f L=ty = 9)*" 1]als|
< F(f) |ft2(t _S){ 1dS|

Il [|[E=f12  [t-9)8]" (t1-5)E]"
Sr(f){[ =& ]0_[ & ]0 iy ]t1}
1Al —[(t; = ) = (t, = 0)] +
= TL [(tl — ;)% — (t; — O)E]
| = [ty = )% = (& — t2)¢]|
||h||51

{l(tz)f + (t; — tz)g - (t1)5| + |—(t1 - t2)$|}
—0as t; 2> t,, VneEN

This shows that B(F) is equicontinuous set in S and so B(C) is relatively compact by Arzela Ascoli
theorem.
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Hence B(C) is compact subset of S and consequently B is partially compact operator on S.
Step V:To show x = AxBx + Cx € S,Vx € S.
Let x € S be an arbitrary element such that x = AxBx + Cx,
Then we have
lx(®)| = |Ax(t)Bx(t) + Cx(t)]

< [Ax(@©]|Bx ()] + [Cx(t)]

t
< F(6.2®)] ‘r 5[ 2D i+ lafe @)ool
< F(6x®)l 75 f oG x)(?y ds + |q(t, 2O)p(©)|
F t h(s)

=1 Jo (t-5)1¢ ds + |q(t,x(t))p(t)|

®
<Frg +la(L=)p©)

< FX; + |q(t, 2(0)|lp@®)|
< FX, + QP

<FK,+K,<3>0,VtE€R,
Taking supremum over t, we obtain [|x|| < 3,
Therefore x € S.
Step VI: Also we have

M = IB(®)| = sup{liBx||: x € €}

1 [t ,
= sup {suptzo {F(f)fo |€t(s_ 7:)(22| ds} X € Q?}

= sup {suppo {F(lf) fot = hs(jz fczls} x € QZ}

1403}
Su’pt>0 (&) ‘7(1

Then by theorem (3.1),

M@y (r) + @c(r) = Killéall + Pllécll < 7,7 > 0,where M = [ B(C)]

Step VII: Here the function p: R, - R, ,q,f,v:R, X R > R, are continuous, nonnegative,
nondecreasing for allt € R, and x € R;.

The operators A, B and C are monotonic increasing that is nondecreasing.

f(tu®) tv(suls))
T©® o gyt 45

Therefore u satisfies the operator inequality u < AuBu + Cu

Now by hypothesis (#¢), that is u(t) < q(t,u(t))p(t) +

L www.worldwidejournals.com | [ 11 H
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There exist an element x, = u € € € S such that x5 < AxyBx, + Cx

Thus the operators A, B and C satisfies all the conditions of theorem (3.1) on S. Hence the operator
equation x(t) = Ax(t)Bx(t) + Cx(t) has a solution in S.Clearly, x* is a solution of the FQIE (1.2)
and the sequence {x,,} of successive approximations defined by

f(txa (1)) ft v(5,2,(5))

Znt1 () = 4(62,O)P(O) + =1 f) (mr ds,t E Ry,

converges monotonically to x*.

Therefore the FQIE (1.2) has a solution x, defined on R,.

Step VII: Now to show the solution is locally attractive on R,. Then we have

{q(t,x(t))p(t) + [x®) fotV(sx(s)) ds }

lx(t) — ¢ (O] = ¢ (tv ?] gs
loevcenpco + 552 75 )

(& x@)] (¢ [v(s, x($)|
re  J, -9

IF (v @)| [¢lv(s,46)|

<|q(t,x@®)p®)| +

Halby )OI+ == | o gre s
< 2Plq(t,4(0)| + 2F L3, Ve € R,
Since lim;_,y(t) = 0 and limt_,ooq(t,x(t)) =0
for € > 0, there is real number T > 0,T > 0 such that y(t) < r(g;) for all t>=T"and

|q(t,x(t))| < ﬁ‘ If we choose T* = max{']I‘ ,T }
Then from above inequality it follows that |x(t) — ¢ (t)| < € forall t = T".
Hence FQIE (1.2) has a locally attractive solution on R,.
This completes the proof.
V. Example:

Example5.1.: Consider the following quadratic integral equation of fractional order

t?x2+3

_ tx(t) 1 7
2(t) = t?x(t).c(I —e ) + xZ G fo (t(t;)?g ds, a>0 (5.1)

Where t € R,and & € (0,1) be a fixed number.
Notice that this equation is special case of equation (1.2)

SolutionHere, q(t,x) = t’x(t),p(t) = c(I —e™*),a > 0,f(t,x) = =

t?x?+3
v(t,x) = @D
It is easy to check that for equation (5.7) there are satisfied all the conditions of theorem (4.1).

To prove this assertion observe that the function q(t, x), p(t),f (¢, x), v(s, x) positive,
nondecreasing and continuous ont € R,
a) To prove the hypothesis (1) is satisfied:

Herep(t) = c(l —e ) < c,Vt € R,

Hence assumption (#1) hold
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b) To prove the hypothesis (H2) is satisfied
Let | (£, #(®) - f(65(0)] = |52 - 52 <512 - 50|

IF(t,2(0)) = F(&(®)] < La®12() = ®)] (+ ta() =2)
Henceassumption(H 2) hold.
¢) Now

la(t, (®)p@®) — q(t, »(®)p®)| = |[t?x(t)c(I — e7%) — t24(E)c(I — e7%)|
< |2l = e7®)||x(t) — 4 (©)]
< Lc@®)]x(t) —»(0)]

(= e(®) = el = e729))
Hence assumption (#'3) hold.
d) To show hypothesis (H 4) is satisfied:

2,.2
tx+3< 1 =h(t)

Now based on theorem (4.1) we conclude that equation (5.7) has positive, nondecreasing solution
x =x(t) fort,x € R,.

Conclusion

In this paper we have studied the existence of solution for the quadratic integral equation
of fractional order. The result has been obtained by using hybrid fixed point theorem for three
operators in partially ordered normed linear space due to Dhage. The main result is well illustrated
with the help of example.
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