| | ORIGINAL RESEARCH PAPER | Mathematics |
| :--- | :--- | :--- | :--- |

1. Introduction

Diophantine equations, homogeneous and non- homogeneous have aroused the interest of numerous mathematicians since antiquity as can be seen from [1-2]. The problem of finding all integral solutions of on Interminate equation with three or more variables in general presents a good deal of difficulties. Cubic equations in two variables fall into the theory of elliptic curves which is a very developed theory but still an important topic of current research [3-13]. For equations with degree at least three very little is known. In this communication a Heptic Polynomial equation with three variables represented by $5\left(x^{2}+y^{2}\right)-9 x y=35 z^{7}$ is considered and three different patterns of non-zero integral solutions have been presented.

2. Method of Analysis:

The equation under consideration is

$$
\begin{equation*}
5\left(x^{2}+y^{2}\right)-9 x y=35 z^{7} \tag{1}
\end{equation*}
$$

Assigning the transformations

$$
x=u+v, y=u-v
$$

in (1) leads to

$$
\begin{equation*}
u^{2}+19 v^{2}=35 z^{7} \tag{4}
\end{equation*}
$$

Assume that $\quad z=a^{2}+19 b^{2}$
Where a and b are non-zero distinct integers in (3) we get

$$
\begin{equation*}
u^{2}+19 v^{2}=35\left(a^{2}+19 b^{2}\right)^{7} \tag{5}
\end{equation*}
$$

Different patterns of solutions of (1) are presented below.

Pattern I:

Write 35 as

$$
\begin{equation*}
35=(4+i \sqrt{19})(4-i \sqrt{19}) \tag{6}
\end{equation*}
$$

use (6), (5) \& (4) in (3) and applying the method of factorization, define

$$
\begin{equation*}
u+i \sqrt{19} v=(4+i \sqrt{19})(a+i \sqrt{19} b)^{7} \tag{7}
\end{equation*}
$$

Equating the real and imaginary parts, we have

$$
\begin{aligned}
& u=u(a, b)=4 a^{7}-1596 a^{5} b^{2}+50540 a^{3} b^{4}-192052 a b^{6}-133 a^{6} b \\
& +12635 a^{4} b^{3}-144039 a^{2} b^{5}+130321 b^{7} \\
& v=v(a, b)=a^{7}-399 a^{5} b^{2}+12635 a^{3} b^{4}-48013 a b^{6}+28 a^{6} b \\
& -2660 a^{4} b^{3}+30324 a^{2} b^{5}-27436 b^{7}
\end{aligned}
$$

Substituting the above values of u and v in equation (2), and hence the non-zero integral solutions of (1) are

$$
\begin{align*}
x= & 5 a^{7}-1995 a^{5} b^{2}+63175 a^{3} b^{4}-240065 a b^{6}-105 a^{6} b \\
& +9975 a^{4} b^{3}-113715 a^{2} b^{5}+102885 b^{7} \\
y= & 3 a^{7}-1197 a^{5} b^{2}+37905 a^{3} b^{4}-144039 a b^{6}-161 a^{6} b \tag{8}\\
& +15295 a^{4} b^{3}-174363 a^{2} b^{5}+157757 b^{7} \\
z= & a^{2}+19 b^{2}
\end{align*}
$$

Pattern II:

Equ (3) can be written as

$$
\begin{equation*}
u^{2}+19 v^{2}=35 z^{7} * 1 \tag{9}
\end{equation*}
$$

Instead of (6), we write as

$$
\begin{equation*}
35=\frac{(8+2 \sqrt{19} i)(8-2 \sqrt{19} i)}{4} \tag{10}
\end{equation*}
$$

and also 1 as

$$
1=\frac{(9+i \sqrt{19})(9-i \sqrt{19})}{100}
$$

use (5), (11), (10) in (9) and applying the method of factorization, define

$$
\begin{equation*}
u+i \sqrt{19}=\frac{1}{20}\left\{(8+2 \sqrt{19} i)(9+i \sqrt{19})(a+i \sqrt{19} b)^{7}\right\} \tag{12}
\end{equation*}
$$

Equating the real and imaginary part, we have

$$
\begin{aligned}
& u=u(a, b)=\frac{1}{20}\left\{34 a^{7}-13566 a^{5} b^{2}+429590 a^{3} b^{4}-1632442 a b^{6}\right. \\
& \left.-3458 a^{6} b-328510 a^{4} b^{3}-3745014 a^{2} b^{5}+3388346 b^{7}\right\} \\
& v=v(a, b)=\frac{1}{20}\left\{26 a^{7}-10374 a^{5} b^{2}+328510 a^{3} b^{4}-1248338 a b^{6}\right. \\
& \left.+238 a^{6} b-22610 a^{4} b^{3}+257754 a^{2} b^{5}-233206 b^{7}\right\}
\end{aligned}
$$

Substituting the values of u and v in equ (2), then the values of x and y are given by

$$
\left.\begin{array}{rl}
x= & \frac{1}{20}\left\{60 a^{7}-23940 a^{5} b^{2}+758100 a^{3} b^{4}-2880780 a b^{6}\right. \tag{13}\\
& \left.-3220 a^{6} b-351120 a^{4} b^{3}-3487260 a^{2} b^{5}-3155140 b^{7}\right\} \\
y= & \frac{1}{20}\left\{8 a^{7}-3192 a^{5} b^{2}+101080 a^{3} b^{4}-384104 a b^{6}\right. \\
& \left.-3696 a^{6} b-305900 a^{4} b^{3}-4002768 a^{2} b^{5}+3621552 b^{7}\right\}
\end{array}\right\}
$$

As our interest is on finding integer solutions, we choose a and b suitably so that the values of x and y are in integers.

Replace a by 20A and b by 20B in (4) and (13) we get

$$
\begin{align*}
x= & 20^{6}\left\{60 A^{7}-23940 A^{5} B^{2}+758100 A^{3} B^{4}-2880780 A B^{6}\right. \\
& \left.-3220 A^{6} B-351120 A^{4} B^{3}-3487260 A^{2} B^{5}-3155140 B^{7}\right\} \\
y= & 20^{6}\left\{8 A^{7}-3192 A^{5} B^{2}+101080 A^{3} B^{4}-384104 A B^{6}\right. \tag{14}\\
& \left.-3696 A^{6} B-305900 A^{4} B^{3}-4002768 A^{2} B^{5}+3621552 B^{7}\right\} \\
z= & 400 A^{2}+7600 B^{2}
\end{align*}
$$

Pattern III:

$$
\begin{equation*}
\text { Let } 35=\frac{(11+i \sqrt{19})(11-i \sqrt{19})}{4} \tag{15}
\end{equation*}
$$

And also 1 a

$$
\begin{equation*}
1=\frac{(5+i 3 \sqrt{19})(5-i 3 \sqrt{19})}{196} \tag{16}
\end{equation*}
$$

Following the same procedure as in pattern II, the non-zero integral solutions of (1) are

$$
\left.\begin{array}{rl}
x= & 28^{6}\left\{36 A^{7}-14364 A^{5} B^{2}+454860 A^{3} B^{4}-1728468 A B^{6}\right. \tag{17}\\
& \left.-5068 A^{6} B+481460 A^{4} B^{3}-5488644 A^{2} B^{5}+4965916 B^{7}\right\} \\
y= & 28^{6}\left\{-40 A^{7}+15960 A^{5} B^{2}-505400 A^{3} B^{4}+1920520 A B^{6}\right. \\
& \left.-5040 A^{6} B+478800 A^{4} B^{3}-5458320 A^{2} B^{5}+4938480 B^{7}\right\} \\
z= & 784 A^{2}+14896 B^{2}
\end{array}\right\}
$$

Note:

It is worth mentioning here that I can also be represented as follows

1. $35=\frac{(12+3 \sqrt{19} i)(12-3 \sqrt{19} i)}{9}$
2. $35=\frac{(16+4 \sqrt{19} i)(16-4 \sqrt{19} i)}{16}$
3. $35=\frac{(20+5 \sqrt{19 i} i)(20-5 \sqrt{19} i)}{25}$
4. $35=\frac{\left(24+6 \sqrt{19} i^{2}\right)(24-6 \sqrt{19} i)}{36}$ and so on.

3. Conclusion:

In this paper we have presented three different patterns of non-zero integral solutions of the Heptic Diophantine equation with three unknown (1). One may search for other patterns of solutions and their corresponding properties.

Reference:

1. L.E. Dickson, History of Theory of Numbers, Vol. 2 Chelsea Publishing Company, New York (1952).
2. Mordell, L.J."Diophantine equations", Academic Press, New York 1969.
3. M.A. Gopalan, S. Vidhyalakshmi and S. Devibala, Integral solutions of $49 x^{2}+50 y^{2}=$ $51 z^{2}$ Acta Ciencia Indica, XXXIIM, No.2, 839(2006).
4. M.A. Gopalan, Note on the Diophantine Equation $x^{2}+x y+y^{2}=3 z^{2}$, Acta Ciencia Indica, XXVI M, No.3, 265, (2000).
5. M.A. Gopalan and Manju Somanath and N. Vanitha, Ternary Cubic Diophantine Equation $2^{2 a-1}\left(x^{2}+y^{2}\right)=z^{3}$, Acta Ciencia Indica, Vol.XXXIV M, No.3, 1135-1137 (2008).
6. M.A. Gopalan and G. Sangeetha, Integral solutions of Ternary
nonhomogeneous biquadratic equation $x^{4}+$ $x^{2}+y^{2}-y=z^{2}+z$, Acta Ciencia Indica Vol.XXXVII M.No.4, 799-803 (2011).
7. M.A. Gopalan, Manju Somanath and G. Sangeetha, Integral solutions of nonhomogeneous quadratic equation $x^{4}-y^{4}=$ $\left(k^{2}+1\right)\left(z^{2}-w^{2}\right)$, Archimedeas journal of mathematics 1(1), 51-57, 2011.
8. M.A. Gopalan and G. Janaki, Integral solutions of $\left(x^{2}-y^{2}\right)\left(3 x^{2}+3 y^{2}-2 x y\right)=2\left(z^{2}-\right.$
$\left.w^{2}\right) p^{3}$, Impact. J. Sci. Tech., Vol.4, No.97-102, 2010.
9. M.A. Gopalan and G. Sangeetha, On the Sextic Diophantine equation with three unknowns $\quad X^{2}-X Y+Y^{2}=\left(K^{2}+3\right)^{n} z^{6}$, impact. J. Sci. Tech., Vol.4, No.4, 89-93, 2010.
10. Anbuselvi R, Kannaki K, On ternary Quadratic Equation $11 x^{2}+$ $3 y^{2}=14 z^{2}$ Volume 5, Issue 2, Feb 2016, Pg No. 65-68.
11. Anbuselvi R , Kannaki K , On ternary Quadratic Equation $x^{2}+x y+y^{2}=12 z^{2}$ IJAR 2016: 2 (3); 533-535.
12. Anbuselvi R , Kannaki K , On ternary Quadratic Equation
$3\left(x^{2}+y^{2}\right)-5 x y+x+y+1=15 z^{3}$ IJSR Sep 2016: 5(9); 42-48.
13. Anbuselvi R, Kannaki K, On ternary Quadratic Diophantine Equation $7\left(x^{2}+y^{2}\right)-13 x y+x+y+1=$ $31 z^{2}$ IERJ Feb 2017: 3(2); 52-57.
