
ORIGINAL RESEARCH PAPER Computer Science

SOFTWARE RELIABILITY - A STUDY

KEY WORDS: Reliability
engineering and assessment, COTS
reliability, diversity

INTRODUCTION:

We use "dependability" informally to designate those system
properties that allows us to rely on a system functioning as
required. Dependability encompasses, among other attributes,
reliability, safety, security, and availability. These qualities are the
shared concern of many sub-disciplines in software engineering,
of specialized fields like computer security, and of reliability and
safety engineering. In this area, an important factor is the diversity
of "the software industry", or, rather, among the many industrial
sectors that produce or use software. The demand for software
dependability varies widely between industrial sectors, as does the
degree of adoption of systematic approaches to it. From many
viewpoints, two extremes of the range are found in mass-
marketed PC software and in safety-critical software for heavily-
regulated industries. A couple of decades ago there was a
revolution in dependability of consumer goods such as TV sets,
VCRs and automobiles, when companies realized that there was
market advantage to be gained by demonstrating higher reliability
than their competitors. There has not yet been a similar movement
in the corresponding sectors of the software industry.

RELIABILITY:

 Software Reliability is defined as the probability of the failure free
software operation for a specified period of time in a specified
environment. Unreliability of any product comes due to the failures
or presence of faults in the system. As software does not �wear-
out� or �age�, as a mechanical or an electronic system does, the
unreliability of software is primarily due to bugs or design faults in
the software. Reliability is a probabilistic measure that assumes
that the occurrence of failure of software is a random
phenomenon. Randomness means that the failure can't be
predicted accurately. The randomness of the failure occurrence is
necessary for reliability modeling.

Overview of Software Reliability Prediction Models

These models are derived from actual historical data from real
software projects. The user answers a list of questions which
calibrate the historical data to yield a software reliability prediction.
The accuracy of the prediction depends on how many parameters
(questions) and datasets are in the model, how current the data is,
and how confident the user is of their inputs. One of the earliest
prediction models was the Rome Laboratory TR-92-52. It was
developed in 1987 and last updated in 1992 and was geared
towards software in avionics systems. Due to the age of the model
and data it's no longer recommended but is the basis for several
modern models such as the Shortcut model, Full-scale model, and
Neufelder assessment model. There are also lookup tables for
software defect density based on the capability maturity or the
application type. These are very simple models but are generally
not as accurate as the assessment based models.

Overview of Software Reliability Growth (Estimation)

Models:

A
B

S
T
R

A
C

T

Software's increasing role creates both requirements for being able to trust it more than before, and for more people to know
how much they can trust their software. A sound engineering approach requires both techniques for producing reliability and
sound assessment of the achieved results. Different parts of industry and society face different challenges: the need for education
and cultural changes in some areas, the adaptation of known scientific results to practical use in others, and in others still the need
to confront inherently hard problems of prediction and decision-making, both to clarify the limits of current understanding and to
push them back. We outline the specific difficulties in applying a sound engineering approach to software reliability engineering,
some of the current trends and problems and a set of issues that we therefore see as important in an agenda for research in
software dependability.

Danda Swathi
M.Tech (Computer Science and Engineering) Kasireddy Narayanreddy College of
Engineering and Research Telangana 501505

Volume-6 | Issue-11 | November-2017 | ISSN - 2250-1991 | IF : 5.761 | IC Value : 79.96PARIPEX - INDIAN JOURNAL OF RESEARCH

Model Number of
inputs

Industry
support

ed

Effort
required
to use

the
model

Relative
accuracy

Year
develop

ed/
Last

updated

Industry
tables

1 Several Quick Varies 1992,
2015

CMMI®
tables

1 Any Quick Low at
low

CMMi®

1997,
2012

Shortcut
model

23 Any Moderate Medium 1993,
2012

Full-scale
model

94-299 Any Detailed Medium-
High

1993,
2012

Metric
based
models

Varies Any Varies Varies NA

Historical
data

A minimum
of 2

Any Detailed High NA

Rayleigh
model

3 Any Moderate Medium NA

RADC TR-
92-52

43-222 Aircraft Detailed Obsolete 1978,
1992

Neufelder
model

156 Any Detailed Medium
to high

2015

Model name Inherent
defect
count

Effort
required

Requires
exact time
between
failures

Increasing fault rate

Weibull Finite/not
fixed

High Yes

Peak

Shooman Constant Defect
Removal Rate Model

Finite/fixed Low Yes

Decreasing fault rate

Shooman Constant Defect
Removal Rate Model

Finite/fixed Low Yes

Linearly Decreasing
General exponential models

including:
· Goel-Okumoto (exponential)

· Musa Basic Model
· Jelinski-Moranda

Finite/fixed Medium Yes

Shooman Linearly Decreasing
Model

Finite/fixed Low Yes

Duane Infinite Medium No

712 www.worldwidejournals.com

RELIABILITY PROCESS:

The reliability process in generic terms is a model of the reliability-
oriented aspects of software development, operations and
maintenance. The set of life cycle activities and artifacts, together
with their attributes and interrelationships that are related to
reliability comprise the reliability process. The artifacts of the
software life cycle include documents, reports, manuals, plans,
code configuration data and test data. Software reliability is
dynamic and stochastic. In a new or upgraded product, it begins at
a low figure with respect to its new intended usage and ultimately
reaches a figure near unity in maturity. The exact value of product
reliability however is never precisely known at any point in its
lifetime

SOFTWARE RELIABILITY ACTIVITIES:

The reliability process in generic terms is a model of the reliability-
oriented aspects of software development, operations, and
maintenance. Quantities of interest in a project reliability profile
include artifacts, errors, defects, corrections, faults, tests, failures,
outages, repairs, validation, and expenditures of resources, such
as CPU time, manpower effort and schedule time. The activities
relating to reliability are grouped into classes:

Ÿ Construction Generates new documentation and code
artifacts Combination Integrates reusable documentation and
code components with new documentation and code
components.

Ÿ Correction Analyzes and removes defects in documentation
and code using static analysis of artifacts.

Ÿ Preparation Generates test plans and test cases, and readies
them for execution.

Ÿ Testing Executes test cases, whereupon failure occurs
Ÿ Identification Makes fault category assignment. Each fault

may be new or previously encountered.
Ÿ Repair Removes faults and possibly introduces new faults.
Ÿ Validation Performs inspections and checks to affirm that

repairs are effective
Ÿ Retest Executes test cases to verify whether specified repairs

are complete if not, the defective repair is marked for repair.
New test cases may be needed.

SOFTWARE RELIABILITY METRICS:

Software Reliability Measurement is not an exact science. Though
frustrating, the quest of quantifying software reliability has never
ceased. Until now, we still have no good way of measuring

software reliability. Measuring software reliability remains a
difficult problem because we don't have a good understanding of
the nature of software. There is no clear definition to what aspects
are related to software reliability. It is tempting to measure
something related to reliability to reflect the characteristics, if we
cannot measure reliability directly. The current practices of
software reliability measurement can be divided into four
categories: Product metrics: Software size is thought to be
reflective of complexity, development effort and reliability. Lines of
Code, or LOC in thousands, is an intuitive initial approach to
measuring software size. But there is not a standard way of
counting. Typically, source code is used and comments and other
non-executable statements are not counted. This method cannot
faithfully compare software not written in the same language. It is
a measure of the functional complexity of the program. It
measures the functionality delivered to the user and is
independent of the programming language. It is used primarily for
business systems; it is not proven in scientific or real-time
applications. Complexity is directly related to software reliability,
so representing complexity is important. Complexity-oriented
metrics is a method of determining the complexity of a program's
control structure, by simplifying the code into a graphical
representation.

Project management metrics: Researchers have realized that

good management can result in better products. Research has
demonstrated that a relationship exists between the development
process and the ability to complete projects on time and within the
desired quality objectives. Costs increase when developers use
inadequate processes. Higher reliability can be achieved by using
better development process, risk management process,
configuration management process, etc.

Process metrics: Based on the assumption that the quality of the

product is a direct function of the process, process metrics can be
used to estimate, monitor and improve the reliability and quality of
software. ISO- 9000 certification, or "quality management
standards", is the generic reference for a family of standards
developed by the ISO.

Fault and failure metrics: The goal of collecting fault and failure

metrics is to be able to determine when the software is
approaching failure-free execution. Minimally, both the number
of faults found during testing and the failures reported by users
after delivery are collected, summarized and analyzed to achieve
this goal. Test strategy is highly relative to the effectiveness of fault
metrics, because if the testing scenario does not cover the full
functionality of the software, the software may pass all tests and
yet be prone to failure once delivered. Usually, failure metrics are
based upon customer information regarding failures found after
release of the software. The failure data collected is therefore used
to calculate failure density, Mean Time between Failures or other
parameters to measure or predict software reliability.

Besides the above metrics, other possible metrics are:

Efficiency: The amount of computing time and resources

required by software to perform desired function it is an important
factor in differentiating high quality software from a low one.

Integrity: The extent to which access to software or data by

unauthorized persons can be controlled Integrity has become

Volume-6 | Issue-11 | November-2017 | ISSN - 2250-1991 | IF : 5.761 | IC Value : 79.96PARIPEX - INDIAN JOURNAL OF RESEARCH

Non-Linearly Decreasing

Musa-Okumoto (logarithmic) Infinite Low Yes

Shooman Exponentially
Decreasing Model

Finite/fixed High Yes

Log-logistic Finite/fixed High Yes

Geometric Infinite High No

Increasing and then
decreasing

Yamada (Delayed)
S-shaped

Infinite High Yes

Weibull Finite/not
fixed

High

www.worldwidejournals.com 713

important in the age of hackers.

Flexibility: The effort required to transfer the program from one

hardware to another. 6.8 Interoperability The effort required to
couple one system to another as indicated by the following sub-
features: adaptability, insatiability, conformance, replacebility.

Maintainability: It is the ease with which repair may be made to

the software as indicated by the following sub-feature:
analyzability, changeability, stability, testability. If a software
needs� less mean time to change, it means it needs less
maintainability

CONCLUSION:

Computers are playing very important role in our day-to-day life
and there is always a need of high quality software. Software
reliability is the most measurable aspect of software quality. Unlike
hardware, software does not age, wear out or rust, unreliability of
software is mainly due to bugs or design faults in the software.
Software reliability is dynamic & stochastic. The exact value of
product reliability is never precisely known at any point in its
lifetime. The study of software reliability can be categorized into
three parts: Modeling, Measurement & improvement. Many
Models exist, but no single model can capture a necessary amount
of software characteristics. There is no single model that is
universal to all the situations. Simulations can mimic key
characteristics of the processes that create, validate & review
documents & code. Software reliability measurement is naive. It
can�t be directly measured, so other related factors are measured
to estimate software reliability. Software reliability improvement is
necessary & hard to achieve.

REFERENCES
1. S. Brocklehurst, B. Littlewood. New ways to get accurate reliability measures. IEEE

Software 9, 4 (July 1992), 34-42.
2. R. C. Cheung. A User-Oriented Software Reliability Model. IEEE Transactions on

Software Engineering SE-6, 2 (March 1980), 118-125.
3. G. F. Clement, P. K. Giloth. Evolution of Fault Tolerant Switching Systems in AT&T.

In A. Avizienis, H. Kopetz and J.-C. Laprie (Eds.) The Evolution of FaultTolerant
Computing, Springer-Verlag, 1987, 37-54.

4. FAA. Federal Aviation Administration, Advisory Circular AC 25.1309-1A, 1985.
5. J.-C. Fabre et al., Assessment of COTS microkernels by fault injection, in Proc.

DCCA-7 (San Jose, California, USA, January 1999), 25-44.
6. N. Fenton, M. Neil. Software Metrics: a roadmap", in this volume.
7. N. Fenton, S. L. Pfleeger, R. Glass. Science and Substance: A Challenge to Software

Engineers. 1EEE Software 11, 4 (July 1994), 86-95.
8. N. E. Fenton, M. Neil. A Critique of Software Defect Prediction Models. IEEE

Transactions on Software Engineering 25, 5 (September/October 1999), 675-689.
9. N. Fota et al., Safety analysis and evaluation of an air traffic control computing

system, in Proc. SAFECOMP '96 (Vienna, Austria, October 1996), 219-229.
10. M. J. Harrold. Testing: a roadmap", in this volume.
11. L. Hat-ton, Programming Languages and safety-Related Systems, in Proc. Safety-

Critical Systems Symposium (Brighton, U.K., 1995), 49-64.

Volume-6 | Issue-11 | November-2017 | ISSN - 2250-1991 | IF : 5.761 | IC Value : 79.96PARIPEX - INDIAN JOURNAL OF RESEARCH

714 www.worldwidejournals.com

	Page 1
	Page 2
	Page 3

