Introduction:
Background: Posterior capsular opacification (PCO, secondary cataract, after cataract) is the most common complication of modern cataract surgery occurring in up to 50% of patients by two years postoperatively. [2-4]

PCO is a misnomer because it is not the capsule which opacifies rather than an opaque membrane develops over it. PCO is the most common complication of cataract surgery. In pediatric cataract surgery, incidence of PCO approaches 100%. [5-7] PCO incidence has been reported to occur in 36-97% of patients 2 to 4 years after ECCE. The corresponding incidence within 1 year after phacoemulsification was 2-5% and within 3 years it was found to range between 2% and 63%. The younger patient are at a higher risk. The incidence of PCO is high in eyes with uveitis. [11] In these eyes, hydrophobic acrylic lenses provide a better visual outcome and lower incidences of PCO than silicone, PMMA IOLs.

The amount of PCO depends on many factors such as the quality of surgery, duration of implant in the eye and biocompatibility of IOL material. It has been reported that AcrySof IOL displays the lowest amount of cell proliferation and hence is most biocompatible. [12]

Patients with Myotonic dystrophy and Retinitis pigmentosa showed a higher incidence and density of PCO.

The continuous curvilinear capsulorhexis (CCC) technique delays the development of central visual obstrucion by facilitating fusion between the edge of CCC to posterior capsule forming a ring which provides a closed environment restricting LECS migration towards the central posterior capsule.

A capsulorrhexis smaller than IOL optic, the adhesion between the anterior capsule and the IOL optic keeps the anterior lens epithelium away from the posterior capsule and decreases the incidence of migration of the anterior LECS behind the IOL optic. [13]

The cortical clean-up hydrodissection is used by many surgeons to facilitate lens substance removal and enhance the safety of the surgery. The goal of hydrodissection is to remove equatorial cells and cortex, as opposed to single layer of anterior epithelium that does not migrate. [14-15] Also the hydraulic force exerted by hydrodissection causes a cleavage between the lens capsule and the cortex, which could cleave mitotically active LECSs from the capsule.

Thorough removal of the residual cortical fibres decreases the number of mitotically active cells; which have the potential to proliferate and migrate across the central visual axis. Polishing the anterior capsule has been effective in reducing fibrotic opacification. A high rate of ACO as well as PCO (upto 65%) has been reported with the plate haptic design IOLs, due to incomplete fusion of the anterior and posterior capsule. Lenses with a plano convex optic (plano posterior) appear to have a lower rate of PCO than biconvex lenses due to mechanical barrier effect of the IOLs, which prevents the LECS proliferation and central migration. Again, the sharp optic edge design was found to be more effective in the prevention of PCO formation compared with IOLs with round optic edges.

PCO represents a significant cost to the health care system. Nd: YAG laser capsulotomy is the most common modality to treat PCO. In the USA, Nd:YAG laser treatments of almost one million patients per year cost up to $250 million annually. [16] In the developing countries, the facility of Nd:YAG laser posterior capsulotomy for management of posterior capsule opacification is not available at all places and all secondary cataract patients cannot afford the treatment. A significant incidence of PCO means that cataract surgery alone may not restore lasting sight to the 25 million people worldwide who are blind from cataract. [17]

Purpose of Study:
1. To detect PCO early so as to improve the patient discomfort and prevent further visual disturbances by providing treatment i.e. Nd:YAG posterior capsulotomy.
2. To establish the diagnosis of PCO and differentiate it from other causes of decreased vision after cataract surgery.
3. To assess the visual acuity (VA) before and after Nd:YAG laser posterior capsulotomy in various types of PCO.
4. To educate and involve the patients in management of this condition.
5. To prevent further loss of visual function.

Etiology and risk factors:
1. Residual lens epithelial cells (LECs) at the equator and the
anterior capsule.
2. Diabetic patients have significantly more severe PCO.
3. Myopic eyes where IOL implantation is deferred.
4. Hydrophilic IOL (silicone, PMMA) have higher incidence than hydrophobic IOL (acrylic).
5. Traumatic cataract.
6. Uveitis
7. Myotonic dystrophy
8. Retinitis pigmentosa

Pathophysiology:
The development of PCO is a very dynamic process and involves three basic phenomena: proliferation, migration, and differentiation of residual LECs.

The PCO has two forms, fibrous and pearl. Sometimes a combination of both is also found. Clinically, it is seen as a wrinkling on the posterior capsule at the site of fusion of the anterior and posterior capsules.

Most secondary cataract are caused by proliferation of equatorial LECs, forming the pearl form of Posterior Capsule Opacification (PCO).

The epithelium of the lens consists of anterior epithelial cells known as A-cells, which is a single continuous cell line. These cells are continuous with the cells of equatorial lens bow. The cells of equatorial lens bow are the E-cells, which comprise of the germinal cells undergoing mitosis as they peel off from the equator.

A-cell tends to remain in place and not migrate and is prone to change towards fibrous tissue (fibrous tissue metaplasia) when disturbed. In contrast, E-cells of equatorial lens bow tend to migrate along the posterior capsule and form pearls to form PCO. These equatorial cells are primary sources of classical secondary cataract, especially the pearl form of PCO. Fibrous form of PCO occurs as a result of either posterior proliferation of A-cells or may result from a fibrous metaplasia of posteriorly migrating E-cells.

The proliferation of residual LECs is highest in the 3 to 4 days after surgery. Residual cortex may also promote proliferation of PCO.

PCO within the central 3 mm zone of the posterior capsule affects high contrast sensitivity, low contrast acuity, and sensitivity psychophysical test results with differing degrees of sensitivity.

Definition:
Secondary cataract, also known as Posterior Capsule Opacification (PCO), is the most common complication after cataract surgery, resulting from migration and proliferation of residual Lens Epithelial Cells (LEC) on the central posterior capsule, leading to decrease in visual function, and ultimately in visual acuity.

Madurai PCO grading scale:

<table>
<thead>
<tr>
<th>Level of Severity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>No PCO</td>
<td>No evidence of posterior capsular opacification (PCO) seen before and after pupillary dilatation to a minimum of 6 mm. With a direct ophthalmoscope, a clear view of the optic disc, blood vessels, and the nerve fiber layer is obtained.</td>
</tr>
<tr>
<td>Grade I</td>
<td>No central PCO is seen. PCO is seen only with the pupil dilated to a minimum of 6 mm. With a direct ophthalmoscope, a clear view of the optic disc, blood vessels, and the nerve fiber layer is obtained.</td>
</tr>
<tr>
<td>Grade II</td>
<td>PCO is present in the central visual axis, detectable in an undilated pupil. With a direct ophthalmoscope, there is a mild obscuration of fundus detail, in that the optic nerve head is clearly seen but the retinal nerve fiber layer and the blood vessels are not clearly seen.</td>
</tr>
<tr>
<td>Grade III</td>
<td>PCO is present in the central visual axis with an undilated pupil. With a direct ophthalmoscope, there is a marked obscuration of fundus detail, in that even the margins of the optic nerve head are not clearly defined because of the PCO.</td>
</tr>
</tbody>
</table>

Materials & Methods:
Aims & Objectives:
1. To detect PCO early in order to alleviate patient discomfort and improve visual function.
2. To diagnose PCO and classify it according to its type.
3. To assess the visual outcome before and after Nd:YAG laser posterior capsulotomy in the study population.

Type of Study: Hospital-based cross-sectional study of 60 eyes.

Place of Study: Department of Ophthalmology, Assam Medical College & Hospital, Dibrugarh, Assam.

Duration of Study: 6 months.

Patients Population: Patients attending Out Patient Department of Department of Ophthalmology, Assam Medical College & Hospital, Dibrugarh, Assam.

Screening of Patients: Individuals of the age of 20 years and above, who presented with the symptoms and signs of posterior capsule Opacification, like, diminution of vision, glare, diplopia, decreased contrast sensitivity with history of previous cataract surgery in same eye, were selected.

Inclusion Criteria:
- Different types of PCO
- Patients above 20 years of age
- Both the sexes
- Informed consent

Exclusion Criteria:
- Below 20 years of age
- Any infective or degenerative condition of the eye
- Visual dysfunction due to any neurological cause, tumours and malignant cases.

Diagnosis:
Symptoms of PCO are persistent slowly worsening blurring, glare and sometimes monocular diplopia.

Each patient was evaluated in details before undergoing Nd:YAG laser capsulotomy to confirm that the visual loss was only due to after contract.

Thorough examination of both eyes of patients was done using the following methods:

- Distant and near visual acuity
- Torch Light examination
- Slit lamp biomicroscopy (including +90D)
- Fundus examination (direct & indirect ophthalmoscopy) to assess media clarity and retinal pathology.
- Applanation tonometry

PCO was diagnosed by calculating the area of opacity on slit-lamp acquired retro-illumination images after complete mydriasis. Signs typically include more than one pattern of Opacification.

Clinically, fibrous type of PCO is seen as a wrinkling on the posterior capsule at the site of fusion of the anterior and posterior capsule. On the other hand, Elschning’s pearl type of PCO is seen as clusters of swollen, opacified differentiated LECs called bladder or Wedl cells. A third form of mixed type of PCO is seen with features having a combination of the above two types.

Following points were noted:
- Visual acuity before and after Nd:YAG laser capsulotomy
- Intraocular pressure before & after laser capsulotomy
- Duration between cataract extraction and development of PCO
- Types of capsular opening during cataract extraction
- Placement of IOL
- Material of intraocular lens
- Types of IOL

Inclusion Criteria:
- Different types of PCO
- Patients above 20 years of age
- Both the sexes
- Informed consent

Exclusion Criteria:
- Below 20 years of age
- Any infective or degenerative condition of the eye
- Visual dysfunction due to any neurological cause, tumours and malignant cases.

Diagnosis:
Symptoms of PCO are persistent slowly worsening blurring, glare and sometimes monocular diplopia.

Each patient was evaluated in details before undergoing Nd:YAG laser capsulotomy to confirm that the visual loss was only due to after contract.

Thorough examination of both eyes of patients was done using the following methods:

- Distant and near visual acuity
- Torch Light examination
- Slit lamp biomicroscopy (including +90D)
- Fundus examination (direct & indirect ophthalmoscopy) to assess media clarity and retinal pathology.
- Applanation tonometry

PCO was diagnosed by calculating the area of opacity on slit-lamp acquired retro-illumination images after complete mydriasis. Signs typically include more than one pattern of Opacification.

Clinically, fibrous type of PCO is seen as a wrinkling on the posterior capsule at the site of fusion of the anterior and posterior capsule. On the other hand, Elschning’s pearl type of PCO is seen as clusters of swollen, opacified differentiated LECs called bladder or Wedl cells. A third form of mixed type of PCO is seen with features having a combination of the above two types.

Following points were noted:
- Visual acuity before and after Nd:YAG laser capsulotomy
- Intraocular pressure before & after laser capsulotomy
- Duration between cataract extraction and development of PCO
- Types of capsular opening during cataract extraction
- Placement of IOL
- Material of intraocular lens
- Types of IOL

Inclusion Criteria:
- Different types of PCO
- Patients above 20 years of age
- Both the sexes
- Informed consent

Exclusion Criteria:
- Below 20 years of age
- Any infective or degenerative condition of the eye
- Visual dysfunction due to any neurological cause, tumours and malignant cases.

Diagnosis:
Symptoms of PCO are persistent slowly worsening blurring, glare and sometimes monocular diplopia.

Each patient was evaluated in details before undergoing Nd:YAG laser capsulotomy to confirm that the visual loss was only due to after contract.

Thorough examination of both eyes of patients was done using the following methods:

- Distant and near visual acuity
- Torch Light examination
- Slit lamp biomicroscopy (including +90D)
- Fundus examination (direct & indirect ophthalmoscopy) to assess media clarity and retinal pathology.
- Applanation tonometry

PCO was diagnosed by calculating the area of opacity on slit-lamp acquired retro-illumination images after complete mydriasis. Signs typically include more than one pattern of Opacification.

Clinically, fibrous type of PCO is seen as a wrinkling on the posterior capsule at the site of fusion of the anterior and posterior capsule. On the other hand, Elschning’s pearl type of PCO is seen as clusters of swollen, opacified differentiated LECs called bladder or Wedl cells. A third form of mixed type of PCO is seen with features having a combination of the above two types.

Following points were noted:
- Visual acuity before and after Nd:YAG laser capsulotomy
- Intraocular pressure before & after laser capsulotomy
- Duration between cataract extraction and development of PCO
- Types of capsular opening during cataract extraction
- Placement of IOL
- Material of intraocular lens
- Types of IOL
Any post operative complication
• Presence of posterior segment pathology
• H/O any systemic disease

Results:
After a short term study of 6 months the following observations were made. 60 eyes were identified having PCO diagnosed by retro-illumination images on Slit lamp biomicroscopy. These cases were grouped according to age, sex, laterality, types of PCO, etc.

Table 1- Age & sex distribution of the study population

<table>
<thead>
<tr>
<th>Age group</th>
<th>Male</th>
<th>Female</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-40</td>
<td>3</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>41-60</td>
<td>7</td>
<td>12</td>
<td>19</td>
</tr>
<tr>
<td>61-80</td>
<td>19</td>
<td>13</td>
<td>32</td>
</tr>
<tr>
<td>81-100</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>31</td>
<td>29</td>
<td>60</td>
</tr>
</tbody>
</table>

Among the study population, maximum percentage, 53.33% (32 out of 60), were of the age group of 61-80 years; followed by 31.67% (19 out of 60) of the age group of 41-60 years; 8.33% (5 out of 60) of the age group of 21-40 years; 6.67% (4 out of 60) of the age group of 81-100 years.

Table 2- Sex distribution of the study population.

<table>
<thead>
<tr>
<th>Sex</th>
<th>No. Of Cases</th>
<th>Percentage (%)</th>
<th>M:F Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>31</td>
<td>51.67</td>
<td>1.06 : 1</td>
</tr>
<tr>
<td>Female</td>
<td>29</td>
<td>48.33</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>60</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Among the total number of patients, 31(51.67%) were males and 29 (48.33%) were females (M:F =1.06:1).

Table 3—Laterality of PCO.

<table>
<thead>
<tr>
<th>Laterality</th>
<th>No. of cases</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right eye</td>
<td>33</td>
<td>55</td>
</tr>
<tr>
<td>Left eye</td>
<td>27</td>
<td>45</td>
</tr>
</tbody>
</table>

Table 4- Visual acuity of the study population at presentation.

<table>
<thead>
<tr>
<th>Visual acuity</th>
<th>No. of cases</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HM – 3/60</td>
<td>10</td>
<td>16.7</td>
</tr>
<tr>
<td>4/60 - 6/60</td>
<td>19</td>
<td>31.7</td>
</tr>
<tr>
<td>6/36 – 6/18</td>
<td>27</td>
<td>45</td>
</tr>
<tr>
<td>6/12 – 6/9</td>
<td>4</td>
<td>6.6</td>
</tr>
</tbody>
</table>

The pre-laser visual acuity estimation showed that 45% (27 out of 60) patients had a vision range of 6/36-6/18 on Snellen's visual acuity chart. 31.7% (19 out of 60) patients had a vision range of 4/60-6/60; 16.7% (10 out of 60) patients had a vision range of HM-3/60; 6.6% (4 out of 60) patients had a vision range of 6/12 – 6/9 on Snellen's visual acuity chart.

Table 5- Duration between cataract extraction and Nd:YAG laser posterior capsulotomy.

<table>
<thead>
<tr>
<th>Time interval (in years)</th>
<th>No. of cases</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 2</td>
<td>24</td>
<td>40</td>
</tr>
<tr>
<td>2 - 4</td>
<td>19</td>
<td>31.7</td>
</tr>
<tr>
<td>4 - 6</td>
<td>8</td>
<td>13.3</td>
</tr>
<tr>
<td>6 - 8</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>8 - 10</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>10 - 12</td>
<td>2</td>
<td>3.3</td>
</tr>
<tr>
<td>12 - 14</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14 - 16</td>
<td>1</td>
<td>1.7</td>
</tr>
</tbody>
</table>

Among the study population, 40% (24 out of 60) were operated within 0-2 years; 31.7% (19 out of 60) were operated between the time interval of 2-4 years; 13.3% (8 out of 60) were operated between the time interval of 4-6 years; 5% (3 out of 60) were operated between the time interval of 6-8 years; 5% (3 out of 60) were operated between the time interval of 8-10 years; 3.3% (2 out of 60) were operated between the time interval of 10-12 years; 1.7% (1 out of 60) was operated between the time interval of 14-16 years and 0% patient were operated between the time interval of 12-14 years.
Among the study population, 45% (27 out of 60) had fibrous type of PCO; 41.7% (25 out of 60) had Elschnig’s pearls type of PCO and 13.3% (8 out of 60) had the mixed variety of PCO.

Table 6- Morphological types of PCO seen in the study population.

<table>
<thead>
<tr>
<th>Types of PCO</th>
<th>No. of cases</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elschnig’s pearls</td>
<td>25</td>
<td>41.7</td>
</tr>
<tr>
<td>Fibrous</td>
<td>27</td>
<td>45</td>
</tr>
<tr>
<td>Mixed</td>
<td>8</td>
<td>13.3</td>
</tr>
<tr>
<td>Total</td>
<td>60</td>
<td>100</td>
</tr>
</tbody>
</table>

Among the study population, 45% (27 out of 60) had fibrous type of PCO; 41.7% (25 out of 60) had Elschnig’s pearls type of PCO and 13.3% (8 out of 60) had the mixed variety of PCO.

Table 7- Techniques of Anterior capsular opening during cataract extraction in the study population.

<table>
<thead>
<tr>
<th>Techniques Of Anterior Capsular Opening</th>
<th>No. Of cases</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous curvilinear capsulorrhexis</td>
<td>43</td>
<td>71.7</td>
</tr>
<tr>
<td>Can opener</td>
<td>17</td>
<td>28.3</td>
</tr>
</tbody>
</table>

Among the study population, 71.7% (43 out of 60) eyes had undergone Continuous Curvilinear Capsulorrhexis technique and 28.3% (17 out of 60) eyes had undergone Can-Opener technique of anterior capsulotomy during cataract extraction.

Table 8- Placement of IOL in the study population.

<table>
<thead>
<tr>
<th>Placement of IOL</th>
<th>No. Of cases</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>In the bag</td>
<td>56</td>
<td>93.3</td>
</tr>
<tr>
<td>In the sulcus</td>
<td>1</td>
<td>1.7</td>
</tr>
<tr>
<td>One haptic in the bag and one in the sulcus</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

Among the study population, 93.3% (56 out of 60) cases had the Intra Ocular Lens placed in the bag; 5% (3 out of 60) cases of one haptic in the bag and one in the sulcus and 1.7% (1 out of 60) was placed in the sulcus.

Table 9- Material of PCIOL used in cataract surgery in the study population.

<table>
<thead>
<tr>
<th>Material of IOL</th>
<th>No. Of cases</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMMA</td>
<td>49</td>
<td>81.7</td>
</tr>
<tr>
<td>Acrylic</td>
<td>11</td>
<td>18.3</td>
</tr>
</tbody>
</table>

Among the study population, PMMA lens was used in 81.7% (49 out of 60) cases and acrylic lens was used in 18.3% (11 out of 60).

Table 10- Visual improvement after Nd:YAG laser posterior capsulotomy.

<table>
<thead>
<tr>
<th>Pre-laser VA</th>
<th>Post-laser VA</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/6-6/9</td>
<td>6/6-6/9</td>
</tr>
<tr>
<td>6/12-6/18</td>
<td>6/24-6/36</td>
</tr>
<tr>
<td>6/60-5/60</td>
<td><5/60</td>
</tr>
<tr>
<td>HM-3/60</td>
<td>0</td>
</tr>
<tr>
<td>4/60-6/60</td>
<td>2</td>
</tr>
<tr>
<td>6/36-6/18</td>
<td>15</td>
</tr>
<tr>
<td>6/12-6/9</td>
<td>4</td>
</tr>
</tbody>
</table>

The study population was grouped according to the pre-laser visual acuity and their post-laser visual acuity improvement. In the pre-laser VA group of HM-3/60, 2 patients gained vision upto the level of 6/24-6/36, 5 patients gained vision upto the level of 6/60-5/60 and 3 patients had vision <5/60. In the pre-laser VA group of 4/60-6/60, 2 patients gained vision upto the level of 6/6-6/9, 12 patients gained vision upto the level of 6/12-6/18 and 5 patients gained vision upto the level of 6/24-6/36. In the pre-laser VA
Among the study population, 50% (30 out of 60) cases had baseline IOP between 13-17 mmHg; 28.3% (17 out of 60) cases had baseline IOP between 10-13 mmHg and 21.7% (13 out of 60) cases had baseline IOP between 17-21 mmHg.

Among the study population, the baseline IOP group of 10-13 mmHg showed immediate post-laser mean IOP of 11.14 mmHg which raised upto 12.18 mmHg 2 hr post-laser treatment. Similarly, patients with a baseline IOP range between 13-17 mmHg had a mean IOP of 14.50 mmHg and 2 hr post-laser mean IOP of 15.23 mmHg. The baseline IOP group of 17-21 mmHg showed immediate post-laser mean IOP of 19.01 mmHg and 2 hr post-laser mean IOP of 20.71 mmHg.

Fig. 10- Visual improvement after Nd:YAG laser posterior capsulotomy.

Table 11- Baseline IOP of the study population.

<table>
<thead>
<tr>
<th>Baseline IOP (mmHg)</th>
<th>No. Of cases</th>
<th>Percentage (%)</th>
<th>Mean Baseline IOP (mmHg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-13</td>
<td>17</td>
<td>28.3</td>
<td>11.14</td>
</tr>
<tr>
<td>13-17</td>
<td>30</td>
<td>50</td>
<td>14.50</td>
</tr>
<tr>
<td>17-21</td>
<td>13</td>
<td>21.7</td>
<td>18.05</td>
</tr>
</tbody>
</table>

Fig. 11- Baseline IOP of the study population.

Table 12- Showing the difference between mean baseline IOP and immediate post-laser IOP and 2 hr post-laser IOP in the study population.

<table>
<thead>
<tr>
<th>Baseline IOP (mmHg)</th>
<th>Mean Baseline IOP (mmHg)</th>
<th>Post-Laser mean IOP (in mmHg)</th>
<th>Immediate</th>
<th>After 2 hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-13</td>
<td>11.14</td>
<td>11.75</td>
<td>12.18</td>
<td></td>
</tr>
<tr>
<td>13-17</td>
<td>14.50</td>
<td>15.23</td>
<td>16.10</td>
<td></td>
</tr>
<tr>
<td>17-21</td>
<td>18.05</td>
<td>19.01</td>
<td>20.71</td>
<td></td>
</tr>
</tbody>
</table>

Discussion:

The study was conducted on 60 eyes attending the outpatient Department of Ophthalmology, Assam Medical College & Hospital, Dibrugarh who underwent cataract extraction with PCIOL implantation. The chief complaints of all the cases was diminished vision which varied from HM to 6/9.

1) The age and number of patients in each category has been analysed in our study and the most common age group affected was 61-80 years (53.33%). A clinical study of visual outcome in Nd:YAG laser capsulotomy done by B. Dharamaraju, et.al, 78% of the population having PCO in the age group of 41-80 years of age.

2) In our study there was no significant sex predilection was although number of male patients was higher i.e, 51.67%.

3) Right eye was involved in more number of patients in our study.

4) Most of the patients under study presented with a visual acuity between 6/36-6/18(45%) followed by visual acuity range of 4/60-6/60(31.7%). This finding is comparable to the study done by B. Dharamaraju, et al, where the maximum number of patients had a pre-laser visual acuity range of 6/36-6/60.

5) In the study the duration between cataract extraction and development of PCO was found to be high within 0-2 years of cataract surgery. Spalton (Eye 1999;13:489-92) in their review article demonstrated that PCO is the commonest complication of cataract surgery occurring in up to 50% of patients after 2–3 years of surgery.

6) The most common morphology of PCO found in the study population was fibrous type (45%) followed by Elschnig’s pearl (42%) which needs further evaluation.

7) In our study the continuous curvilinear capsulorhexis (CCC) technique of cataract extraction was higher than can opener technique. Ravalico et al (J Cataract Refract Surg 1996;22(1):98-103) studied the relationship of capsulorhexis size with the occurrence of PCO and concluded that capsulorhexis with a slightly smaller diameter than the IOL optic appears to be better than a large-size capsulorhexis in reducing the incidence of PCO.

8) The most common type of intraocular lens implantation was in the capsular bag in the study group which needs further evaluation.

9) In our study the rate of PCO was high in PMMA group which is 81.7% than acrylic group with 18.3%. A laboratory study has shown that the AcrySoft IOL has a relatively low propensity to induce cellular proliferation in the capsular bag and has less Sommering’s ring formation than other IOL designs.

10) All the 60 patients had visual acuity improvement of 1 or more lines after capsulotomy. No one had further decline in visual acuity after capsulotomy.

11) On an average, patients with baseline IOP range between 10-13 mmHg had a mean IOP of 11.14 mmHg which raised upto 11.75 mmHg immediately post-laser and 12.18 mmHg 2 hour post-laser treatment. Similarly, patients with a baseline IOP range between 13-17 mmHg had a mean IOP of 14.50 mmHg which raised upto 15.23 mmHg immediately post-laser and 16.10 mmHg 2 hour post-laser treatment. Again, patients

www.worldwidejournals.com
with baseline IOP range between 17-21 mmHg had a mean IOP of 18.05 mmHg which raised up to 19.01 mmHg immediately post-laser and 20.71 mmHg 2 hour post-laser treatment. Wasserman et al. (J Am Intraocul Implant Soc 1985;11(3):245-8) presented results of a study of 367 Nd:YAG laser posterior capsulotomies and associated changes in intraocular pressure (IOP), corneal endothelial cell integrity, and visual acuities. The average maximum induced IOP rise was 1.4 mmHg and this occurred within 1 hour of the capsulotomy.

Keeping in view several vision-threatening complications of Nd: YAG laser capsulotomy or surgical capsulotomy, peeling or removal of epithelial cells from the posterior capsule in eyes with pearls type of PCO with automated irrigation mode or capsule vacuuming mode or using two-way Simcoe cannula is recommended particularly for high myopic patients where incidence of retinal detachment increases several folds after Nd: YAG laser or surgical posterior capsulotomy.

Conclusion:
Precise methods of evaluation are important to measure the progress of posterior capsule opacification. Nd:YAG laser posterior capsulotomy is a non-invasive, highly effective and relatively safe technique to restore vision in patients with after cataract.

References: