

# ORIGINAL RESEARCH PAPER

## **Physics**

# SUNSPOT NUMBER INFLUENCING RAINFALL OVER **JAIPUR CITY**

**KEY WORDS:** e-resources knowledge, attitude towards using social media and college students.

| Dr. Himadri T |
|---------------|
| Daspattnayak* |

Apex College for Girls, Jaipur. \*Corresponding Author

Dr. Devendra **Pareek** 

Bhopal Novel's University Udaipur.

**Dr. S.N.A Jaaffrey** Bhopal Novel's University Udaipur.

**ABSTRACT** 

This study has undertaken the data during the Year 1952 to 2012 AD for the investigation on the correlation amongst the rainfall, sunspots in north-western part of India (specifically in the city of Jaipur). We have computed the annual average sunspots, rainfall data and tried to find inter dependence in context of extraterrestrial influence apart from the anthropogenic activities. During maximum and minimum solar activity, rainfall at Udaipur has been found to be more than average rainfall which indicated that solar activity helped in precipitation of clouds in the monsoon seasons after condensation and nucleation.

#### Introduction

Jaipur, the capital city of the Indian state of Rajasthan is situated in the eastern border of Thar Desert, a semi-arid land. This state is one of the biggest of the country which shares the international boundary with Pakistan on the western side. Jaipur is popularly known as the pink city and is one of the well-planned cities in India, apparently, also the first. It is positioned at an altitude of 1417 feet above the sea level. On three sides, the city is enclosed by the Aravali hills and this is why, it is safeguarded from the rough desert. In the north, it is surrounded by Sikar and Mahendragarh district; in the south by Tonk; in the east by Alwar, Dausa and Sawai Madhopur and in the west by Nagaur and Ajmer district. (Vibhuti Sachdev, 2002)

The total length of Jaipur extending from east to west is about 180 km whereas the width from north to south is about 110 km. About 28.65 million cubic meter ground water resources are available in Jaipur. To provide the drinking water to the old city, there is Ramgarh dam on the River Ban Ganga.



Figure-5.1: Political map of India highlighting Jaipur city.



Figure-5.2: Political Map of Rajasthan highlighting Jaipur city.

## 5.2 - Climate of Jaipur

Jaipur has a hot semi arid climate under the Koppen climate classification receiving over 650 millimeters (26 in) of rainfall

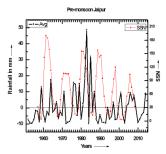
annually but most rains occur in the monsoon months between June and September. Temperatures remain relatively high during summer from April to early July having average daily temperatures of around 30 °C (86 °F). During the monsoon there are frequent, heavy rains and thunderstorms, but flooding is not common. The winter months of November to February are mild and pleasant, with average temperatures ranging from 10-15 °C (50-59 °F) and with little or no humidity and cold waves lead to temperatures near freezing. Jaipur has resides on 26ş 55'E latitude and 75ş 52'E longitude in the geographical map. (Churu's Marwari, Nand Kishore Chaudhary's).

## 5.3 - Data Analysis

In this study we have examined 60 years (1952-2012) data of the sunspot number and variability of the monsoon rain fall in Udaipur for periodic analysis. We have collected the sunspot number data from Udaipur Solar Observatory (USO), Udaipur and rainfall data from meteorological department (Airport Authority of India, Udaipur). All the rainfall data are available in mm in monthly and annual series.

In the present analysis we have strategically placed monthly data into 4 specific seasons i.e. as Pre-Monsoon, Monsoon, Post-Monsoon and winter. Clarifying the seasons Pre-Monsoon considered as Month of March, April & May; Monsoon as the Month of June, July, August & September; Post Monsoon as the month of October & November; finally winter as December, January & February. For similar set of year we have collected the sunspot data by using 12 months data and computed annual mean of sunspots.

In order to understand the solar and galactic cosmic radiation effect on rainfall by comparing our sunspot number data with the season wise rainfall data. During 11 years sunspot activity cycle become effective for 5.5 years period for solar activity maxima and minima, which cause more annual rainfall during monsoon season.


Table-5.1: Data computed between SSN and Rainfall in Premonsoon Season (Mar, Apr & May).

| Year | Mean       | Avg      | SSN    |
|------|------------|----------|--------|
| 1952 | 2.84±0.02  | -7.0836  | 31.41  |
| 1953 | 0.4±.03    | -9.52    | 13.85  |
| 1954 | 0.33±.02   | -9.58667 | 4.41   |
| 1955 | 2.43±0.02  | -7.48667 | 37.95  |
| 1956 | 8.27±0.06  | -1.65333 | 141.71 |
| 1957 | 7.8±0.05   | -2.12    | 189.86 |
| 1958 | 1.2±0.01   | -8.72    | 184.59 |
| 1959 | 23.13±0.18 | 13.21333 | 158.75 |
| 1960 | 6.1±0.07   | -3.82    | 112.28 |
|      |            |          |        |

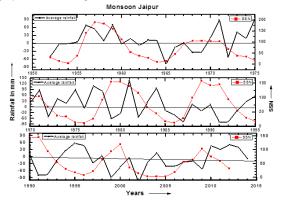
www.worldwidejournals.com

| AKIPEX - INDIA | N JOURNAL OF | RESEARCH |        |
|----------------|--------------|----------|--------|
| 1961           | 1.13±0.09    | -8.78667 | 55.15  |
| 1962           | 7.63±0.5     | -2.28667 | 37.6   |
| 1963           | 5.33±0.39    | -4.58667 | 27.89  |
| 1964           | 27.43±0.24   | 17.51333 | 10.2   |
| 1965           | 7.16±0.4     | -2.75333 | 15.07  |
| 1966           | 8.76±0.75    | -1.15333 | 46.88  |
| 1967           | 13.7±0.11    | 3.78     | 93.67  |
| 1968           | 3.1±0.02     | -6.82    | 105.89 |
| 1969           | 8±0.07       | -1.92    | 105.56 |
| 1970           | 5.1±0.4      | -4.82    | 104.69 |
| 1971           | 20.06±0.18   | 10.14667 | 104.69 |
| 1972           | 0            | -9.92    | 68.93  |
| 1973           | 0.9±0.05     | -9.02    | 38.15  |
| 1974           | 1.53±0.01    | -8.38667 | 34.41  |
| 1975           | 4.86±0.39    | -5.05333 | 15.46  |
| 1976           | 25.73±0.19   | 15.81333 | 12.55  |
| 1977           | 24.6±0.23    | 14.68    | 27.48  |
| 1978           | 5.2±0.4      | -4.72    | 92.66  |
| 1979           | 24.96±0.22   | 15.04667 | 155.28 |
| 1980           | 2.97±0.19    | -6.95333 | 154.65 |
| 1981           | 12.53±0.09   | 2.61333  | 140.45 |
| 1982           | 29.17±0.27   | 19.24667 | 116.3  |
| 1983           | 58.63±0.48   | 48.71333 | 66.64  |
| 1984           | 0.1±.09      | -9.82    | 45.85  |
| 1985           | 42.1±0.35    | 32.18    | 17.94  |
| 1986           | 7.33±.6      | -2.58667 | 13.4   |
| 1987           | 20.03±0.18   | 10.11333 | 29.23  |
| 1988           | 2.97±0.3     | -6.95333 | 100    |
| 1989           | 0            | -9.92    | 157.8  |
| 1990           | 5.57±0.05    | -4.35333 | 142.3  |
| 1991           | 0.83±0.08    | -9.08667 | 145.8  |
| 1992           | 0.8±.07      | -9.12    | 94.48  |
| 1993           | 0.43±.04     | -9.48667 | 54.73  |
| 1994           | 10.07±.18    | 0.14667  | 29.87  |
| 1995           | 2.97±0.25    | -6.95333 | 17.5   |
| 1996           | 4.33±.37     | -5.58667 | 8.63   |
| 1997           | 13.4±.02     | 3.48     | 21.48  |
| 1998           | 2.57±.3      | -7.35333 | 64.21  |
| 1999           | 3±.04        | -6.92    | 93.18  |
| 2000           | 12.57±.15    | 2.64667  | 119.5  |
| 2001           | 19.67±.20    | 9.74667  | 34.37  |
| 2002           | 5.37±.45     | -4.55333 | 14.33  |
| 2003           | 0.5±0.03     | -9.42    | 3.45   |
| 2004           | 11±0.09      | 1.08     | 3.33   |
| 2005           | 12.47±0.10   | 2.54667  | 3.04   |
| 2006           | 19.46±.15    | 9.54667  | 19.56  |
| 2007           | 14.3±0.10    | 4.38     | 55.21  |
| 2008           | 17.53±0.09   | 7.61333  | 63.45  |
| 2009           | 9.13±.08     | -0.78667 | 103.7  |
| 2010           | 0.8±0.6      | -9.12    | 74.9   |
| 2011           | 3±0.17       | -6.92    | 58.95  |
| 2012           | 5.43±.39     | -4.48667 | 31.72  |
| •              |              | •        | •      |

The above table shows the compiled data of rainfall and sunspot number chronically arranged from the year 1952-2012 over Jaipur city. Column three is filled with average data of rainfall in premonsoon of Jaipur city.



**Figure-5.3:** Plot of rainfall, SSN as a function of year 1952-2012 (Mar, Apr & May).


The premonsoon in Jaipur city is seems to be very weak about 9.92 mm rainfall. But there is some remarkable excess rainfall in the year 1959, 1964, 1976, 1978, 1982, 1986, 2001 and 2006.

**Table –5.2** Data computed between SSN and Rainfall in Monsoon Season (Jun, Jul, Aug & Sept).

| Year | Mean rainfall(mm)            | Avg Rainfall    | SSN            |
|------|------------------------------|-----------------|----------------|
| 1952 | 89.85±8.49                   | 47.8996         | 31.41          |
| 1953 | 136.72±10.41                 | -1.015          | 13.85          |
| 1954 | 137.42±12.97                 | -0.315          | 4.41           |
| 1955 | 143.42±13.22                 | 5.685           | 37.95          |
| 1956 | 206.6±19.22                  | 68.86           | 141.71         |
| 1957 | 192.32±16.67                 | 54.585          | 189.86         |
| 1958 | 148.05±6.88                  | 10.31           | 184.59         |
| 1959 | 208.85±13.05                 | 71.11           | 158.75         |
| 1960 | 135.65±16.21                 | -2.09           | 112.28         |
| 1961 | 156.47±8.24                  | 18.735          | 55.15          |
| 1962 | 130.5±10.85                  | -7.24           | 37.6           |
| 1963 | 151.95±14.17                 | 14.21           | 27.89          |
| 1964 | 148.12±16.06                 | 10.385          | 10.2           |
| 1965 | 60.77±3.38                   | -76.965         | 15.07          |
| 1966 | 122.9±11.26                  | -14.84          | 46.88          |
| 1967 | 140.77±6.15                  | 3.035           | 93.67          |
| 1968 | 103.62±12.10                 | -34.115         | 105.89         |
| 1969 | 104.45±7.23                  | -33.29          | 105.56         |
| 1970 | 159.22±11.40                 | 21.485          | 104.69         |
| 1971 | 226.67±13.38                 | 88.935          | 104.69         |
| 1972 | 86.8±7.75                    | -50.94          | 68.93          |
| 1973 | 181.27±22.13                 | 43.535          | 38.15          |
| 1974 | 157.07±17.14                 | 19.335          | 34.41          |
| 1975 | 229.22±13.69                 | 91.485          | 15.46          |
| 1976 | 131.25±6.08                  | -6.49           | 12.55          |
| 1977 | 248.02±11.11                 | 110.285         | 27.48          |
| 1977 | 246.02±11.11<br>221.55±17.11 | 83.81           | 92.66          |
| 1978 | 76.92±5.98                   | -60.815         | 155.28         |
| 1979 |                              | -33.515         | 153.26         |
| 1981 | 104.22±6.98<br>276.05±25.7   | 138.31          | 140.45         |
| 1981 | 83.17±8.69                   | -54.565         | 116.3          |
| 1983 | 161.2±15.77                  | 23.46           | 66.64          |
| 1984 | 180.3±7.38                   | 98.34           | 45.85          |
| 1985 | 120.55±12.97                 | -17.19          | 17.94          |
| 1986 | 96.75±12.97                  | -40.99          | 13.4           |
| 1987 | 59.6±5.6                     | -78.14          | 29.23          |
| 1988 | 152.95±13.17                 | 15.21           | 100            |
| 1989 | 118.27±16.39                 | -19.465         | 157.8          |
| 1990 | 150.62±10.95                 | 12.885          | 142.3          |
| 1991 | 57.82±3.97                   | -79.915         | 145.8          |
| 1992 | 61.57±5.75                   | -76.165         | 94.48          |
| 1993 | 119.92±3.02                  | -17.815         | 54.73          |
| 1994 | 165.15±9.43                  | 27.41           | 29.87          |
| 1995 | 195.85±20.5                  | 58.11           | 17.5           |
| 1996 | 185.95±5.75                  | 48.21           | 8.63           |
| 1997 | 111.22±9.48                  | -26.515         | 21.48          |
| 1998 | 143.2±9.90                   | 5.46            | 64.21          |
| 1999 | 49.67±3.99                   | -88.065         | 93.18          |
| 2000 | 94.5±8.73<br>132.95±13.59    | -43.24<br>-4.79 | 119.5<br>34.37 |
| 2001 | 28.4±3.04                    | -4.79           | 14.33          |
| 2002 | 113.65±3.9                   | -24.09          | 3.45           |
| 2003 | 154.2±18.11                  | 16.46           | 3.33           |
| 2004 | 97.05±6.8                    | -40.69          | 3.04           |
| 2006 | 97.55±3.7                    | -40.19          | 19.56          |
| 2007 | 116.1±8.14                   | -21.64          | 55.21          |
| 2008 | 120.57±5.20                  | -17.165         | 63.45          |
| 2009 | 84.85±4.59                   | -52.89          | 103.7          |
|      |                              |                 | 39             |

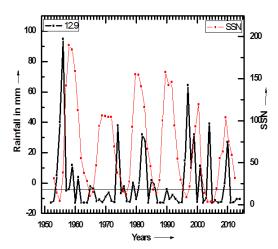
| 2010 | 185.25±15.24 | 47.51  | 74.9  |
|------|--------------|--------|-------|
| 2011 | 168.72±4.48  | 30.985 | 58.95 |
| 2012 | 189.47±16.23 | 51.735 | 31.72 |

The above table represents the data computed between SSN and rainfall. The average rainfall 137.75 mm observed from 1952-2012 over Jaipur city during monsoon season. The corresponding graph is shown in Figure - 5.4.



**Figure-5.4:** Plot of rainfall, SSN as function of year 1952-2012 (Jun, Jul, Aug & Sept).

The above graph shows the clear systematic trend of rainfall versus sunspot number i.e. the rainfall is above average during the solar maxima and solar minima.


Table-5.3: Data computed between SSN and Rainfall in Post-Monsoon Season (Oct & Nov).

| Year | Rainfall(mm) | Avg Rainfall | SSN   |
|------|--------------|--------------|-------|
| 1952 | 0            | -12.9        | 31.41 |
| 1953 | 1.06±.09     | -11.839      | 13.85 |
| 1954 | 18±1.2       | 5.1          | 4.41  |
| 1955 | 53.2±3.6     | 40.3         | 37.95 |
| 1956 | 107.65±9.8   | 94.75        | 141.7 |
| 1957 | 8±.75        | -4.9         | 189.9 |
| 1958 | 8.7±.67      | -4.2         | 184.6 |
| 1959 | 24.7±.26     | 11.8         | 158.8 |
| 1960 | 0            | -12.9        | 112.3 |
| 1961 | 16.85±1.1    | 3.95         | 55.15 |
| 1962 | 0            | -12.9        | 37.6  |
| 1963 | 0            | -12.9        | 27.89 |
| 1964 | 0            | -12.9        | 10.2  |
| 1965 | 10.55±1.7    | -2.35        | 15.07 |
| 1966 | 9.05±1.6     | -3.85        | 46.88 |
| 1967 | 0.9±1.5      | -12          | 93.67 |
| 1968 | 1.9±.09      | -11          | 105.9 |
| 1969 | 0.25±.02     | -12.65       | 105.6 |
| 1970 | 3.75±.36     | -9.15        | 104.7 |
| 1971 | 6.6±0.55     | -6.3         | 104.7 |
| 1972 | 1.15±.98     | -11.75       | 68.93 |
| 1973 | 0.35±.04     | -12.55       | 38.15 |
| 1974 | 50.9±.45     | 38           | 34.41 |
| 1975 | 6.25±0.21    | -6.65        | 15.46 |
| 1976 | 10.7±1.3     | -2.2         | 12.55 |
| 1977 | 0.8±0.1      | -12.1        | 27.48 |
| 1978 | 0.45±.04     | -12.45       | 92.66 |
| 1979 | 13.1±1.7     | 0.2          | 155.3 |
| 1980 | 2.3±.03      | -10.6        | 154.7 |
| 1981 | 13±1.5       | 0.1          | 140.5 |
| 1982 | 44.8±3.9     | 31.9         | 116.3 |
| 1983 | 40.3±3.5     | 27.4         | 66.64 |
| 1984 | 0            | -12.9        | 45.85 |
| 1985 | 14.65±1.3    | 1.75         | 17.94 |
| 1986 | 11.8±1.4     | -1.1         | 13.4  |
| 1987 | 0            | -12.9        | 29.23 |
| 1988 | 0            | -12.9        | 100   |

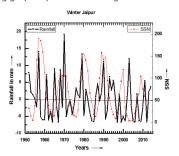
| volume-7 | issue-z   rebrua | ry-2018   PKINT IS | 55N NO - 225U-199 |
|----------|------------------|--------------------|-------------------|
| 1989     | 0                | -12.9              | 157.8             |
| 1990     | 8.9±.09          | -4                 | 142.3             |
| 1991     | 2.3±0.07         | -10.6              | 145.8             |
| 1992     | 5±0.04           | -7.9               | 94.48             |
| 1993     | 2.25±.02         | -10.65             | 54.73             |
| 1994     | 0.05±.003        | -12.85             | 29.87             |
| 1995     | 0.15±.02         | -12.75             | 17.5              |
| 1996     | 27.8±2.5         | 14.9               | 8.63              |
| 1997     | 77.4±6.8         | 64.5               | 21.48             |
| 1998     | 23.15±1.9        | 10.25              | 64.21             |
| 1999     | 44.9±3.9         | 32                 | 93.18             |
| 2000     | 0.6±0.04         | -12.3              | 119.5             |
| 2001     | 24.25±2.3        | 11.35              | 34.37             |
| 2002     | 0                | -12.9              | 14.33             |
| 2003     | 2.95±1.9         | -9.95              | 3.45              |
| 2004     | 52.05±4.6        | 39.15              | 3.33              |
| 2005     | 0                | -12.9              | 3.04              |
| 2006     | 1.3±.01          | -11.6              | 19.56             |
| 2007     | 0                | -12.9              | 55.21             |
| 2008     | 0.55±.04         | -12.35             | 63.45             |
| 2009     | 12.55±1.2        | -0.35              | 103.7             |
| 2010     | 40±3.8           | 27.1               | 74.9              |
| 2011     | 0                | -12.9              | 58.95             |
| 2012     | 0.15±0.01        | -12.75             | 31.72             |

This table categorized post monsoon season (Oct & Nov) was examined and data computed between SSN and rainfall is tabulated. The 3rd column contains the average rainfall of 12.9 mm obtain for the year 1952-2012 over Jaipur city. The corresponding graph is shown in figure 5.5.

### Post-monsoon Jaipur



**Figure: 5.5:** plot of rainfall, ssn as a function of year 1952-2012 post monsoon wise (Oct & Nov).


This figure represents the post-monsoon season which was not well defined frequency of occurrence in maximum rainfall over the period of 60 years in Jaipur city.

**Table-5.4:** Data computed between SSN and Rainfall in Winter Season (Dec, Jan & Feb).

| Year | Mean Rainfall(mm) | Avg Rainfall | SSN    |
|------|-------------------|--------------|--------|
| 1952 | 14.55±1.3         | 7.87593      | 31.41  |
| 1953 | 8.8±1.1           | 2.13         | 13.85  |
| 1954 | 8±.6              | 1.33         | 4.41   |
| 1955 | 6.9±0.4           | 0.23         | 37.95  |
| 1956 | 4.46±0.2          | 2.20333      | 141.71 |
| 1957 | 20.67±2.4         | 13.9967      | 189.86 |
| 1958 | 1.53±0.09         | 5.13667      | 184.59 |
| 1959 | 0.67±.05          | 6.00333      | 158.75 |
| 1960 | 0.63±.02          | 6.03667      | 112.28 |

| PARIPEX - INDIAN JOURNAL OF RESEARCH |           |         |        |  |
|--------------------------------------|-----------|---------|--------|--|
| 1961                                 | 13.83±1.1 | 7.16333 | 55.15  |  |
| 1962                                 | 0.6±.03   | -6.07   | 37.6   |  |
| 1963                                 | 2.93±     | 3.73667 | 27.89  |  |
| 1964                                 | 0         | -6.67   | 10.2   |  |
| 1965                                 | 15.7±1.2  | 9.03    | 15.07  |  |
| 1966                                 | 4.97±0.3  | 1.70333 | 46.88  |  |
| 1967                                 | 0         | -6.67   | 93.67  |  |
| 1968                                 | 15.3±1.1  | 8.63    | 105.89 |  |
| 1969                                 | 4.27±.35  | 2.40333 | 105.56 |  |
| 1970                                 | 25.8±1.9  | 19.13   | 104.69 |  |
| 1971                                 | 1.63±0.02 | 5.03667 | 104.69 |  |
| 1972                                 | 4.73±0.04 | 1.93667 | 68.93  |  |
| 1973                                 | 6.43±.46  | 0.23667 | 38.15  |  |
| 1974                                 | 2.13±.07  | 4.53667 | 34.41  |  |
| 1975                                 | 5.03±.08  | 1.63667 | 15.46  |  |
| 1976                                 | 10±1.1    | 3.33    | 12.55  |  |
| 1977                                 | 7.93±.9   | 1.26333 | 27.48  |  |
| 1978                                 | 7.23±.8   | 0.56333 | 92.66  |  |
| 1979                                 | 19.9±1.5  | 13.23   | 155.28 |  |
| 1980                                 | 1.87±.02  | 4.80333 | 154.65 |  |
| 1981                                 | 9.57±0.08 | 2.89667 | 140.45 |  |
| 1982                                 | 6.73±0.49 | 0.06333 | 116.3  |  |
| 1983                                 | 2.87±.27  | 3.80333 | 66.64  |  |
| 1984                                 | 0.27±.18  | 6.40333 | 45.85  |  |
| 1985                                 | 0.13±0.01 | 6.53667 | 17.94  |  |
| 1986                                 | 7.47±1.2  | 0.79667 | 13.4   |  |
| 1987                                 | 11.23±1.4 | 4.56333 | 29.23  |  |
| 1988                                 | 6.17±.89  | 0.50333 | 100    |  |
| 1989                                 | 9.03±.95  | 2.36333 | 157.8  |  |
| 1990                                 | 17.73±1.1 | 11.06   | 142.3  |  |
| 1991                                 | 0.87±.07  | 5.80333 | 145.8  |  |
| 1992                                 | 4.07±.46  | 2.60333 | 94.48  |  |
| 1993                                 | 13.33±1.5 | 6.66333 | 54.73  |  |
| 1994                                 | 9.3±1.1   | 2.63    | 29.87  |  |
| 1995                                 | 12.17±2.3 | 5.49667 | 17.5   |  |
| 1996                                 | 6.47±.68  | 0.20333 | 8.63   |  |
| 1997                                 | 0         | -6.67   | 21.48  |  |
| 1998                                 | 8.13±.09  | 1.46333 | 64.21  |  |
| 1999                                 | 0         | -6.67   | 93.18  |  |
| 2000                                 | 1.63±.18  | 5.03667 | 119.5  |  |
| 2001                                 | 0.27±.24  | 6.40333 | 34.37  |  |
| 2002                                 | 7.5±.65   | 0.83    | 14.33  |  |
| 2003                                 | 18.63±1.2 | 11.9633 | 3.45   |  |
| 2004                                 | 5.13±.43  | 1.53667 | 3.33   |  |
| 2005                                 | 0.35±.04  | -6.32   | 3.04   |  |
| 2006                                 | 0.551.04  | -6.67   | 19.56  |  |
| 2007                                 | 8.2±0.08  | 1.53    | 55.21  |  |
| 2008                                 | 0.4±0.03  | -6.27   | 63.45  |  |
| 2009                                 | 0.4±0.03  | 6.53667 | 103.7  |  |
| 2009                                 | 4.87±.35  | 1.80333 | 74.9   |  |
| 2010                                 | 12.1±1.3  | 5.43    | 58.95  |  |
| 2011                                 | 0         | -6.67   | 31.72  |  |
| 2012                                 | U         | -0.0/   | 31./2  |  |

The above table proves that, the winter season comprising the month Dec, Jan & Feb witnessed very less rainfall within the average of 6.67mm observed from the year 1952-2012 over Jaipur city. The data computed for SSN and rainfall and the corresponding graph is plotted in the figure-5.6.

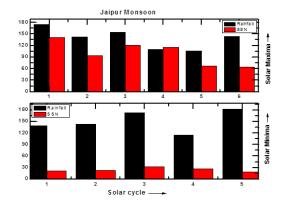


**Figure: 5.6:** Plot of rainfall, SSN as a function of year 1952-2012 Winter wise (Dec, Jan & Feb).

Here the plot of rainfall is clearly indicated the maximum rainfall more than average during 1950-2012 over Jaipur city.

## **Conclusion & Discussion**

During the previous analysis in chapter 3 & 4 we come to know that, the average rainfall has been increased with the observed maximum & minimum number of sunspots in a solar cycle. ( K. M. Hiremath 1995)


On the other hand analyzing the data in Jaipur city it was found that, the average rainfall is relatively low during Pre-Monsoon, Post-Monsoon and winter. Hence, graphs don't justify any correlation between rainfall and sunspot number.

But in the monsoon season, if we compared the rainfall data with the Sun spot data we can see the good correlation between them.

For the better analysis of monsoon rainfall data of 60 years with Sunspot Number we divided the whole year (1952-2012) into three parts .One from 1950- 1975, 1975 –1995 and 1995 - 2012. In the first part 1950 - 1975 there is two solar cycle of 11 years i.e. one solar cycle from 1952 – 1963 and second solar cycle from 1963 – 1974. In the first solar cycle there is two peak of maximum rainfall in the year 1956 and 1959 and in the solar minima there is also two peak of maximum rainfall in the year 1961 and 1964. In the second solar cycle there is one peak in the year 1971 on solar maxima and another peak of maximum rainfall in the year 1973and 1975 on solar minima.

In the second half of the graph from 1975 to 1995 there are two solar cycles one is from 1975 to 1986 and another from 1986 to 1997. In the first solar cycle there is one peak of maximum rainfall in the year 1981 on solar maxima and one peak of maximum rainfall in 1984 on solar minima.

In the last portion of the graph contained 1995 to 2012 which consist of two solar cycle 1995 to 2006 and 2006 to 2012. In this period there is one peak of maximum rainfall in 1996 on solar minima and here is an exception that there is no maximum rainfall in solar maxima. And again there is a maximum rainfall in 2004 on solar minima.



**Figure-5.7:** Histograms represents for rainfall versus SSN for Jaipur City (Monsoon wise).

In order to understand the systematic trend of rain and its attribution with SSN is clearer manner, the histograms of average SSN and rain is plotted in two parts of figure 5.7. Here we found clear trends of maximum rainfall during maximum and minimum of SSN.

The results are quiet encouraging in the context of extra terrestrial influence on rain because it existed not only in the last century but since the birth of the earth. There is no doubt about the anthropogenic influence (global warming, pollutions, green house

effect, La nina and El Nino etc.) on the rain but still I am observing variations in rainfall with draught and flood. This clearly indicates the role of solar activities and galactic cosmic radiations on the rainfall. This may produce charged secondary cosmic radiation in atmosphere, which are prone to act like centers for the cloud formation and nucleation for essential precipitation. This justifies the correlation and attribution of rainfall with the extra terrestrial influences.

#### **REFERENCES**

- Culture of Jaipur Cultural Heritage, Art & Architecture of Jaipur", jaipur.org. Retrieved 27 July 2015.
- "Jaipur City (or Jainagar)", (1909), The Imperial Gazetteer of India. pp. 399–402. Churu's Marwari, Nand Kishore Chaudhary's.;(2012) "Jaipur Rugs a matter of discourse at Harvard", Economic Times, Retrieved 24 February 2012. Hiremath, K. M.; "Steady and fluctuating parts of the sun's internal magnetic field: Improved model", Astrophys. J.; 448, pp. 437-443, 1995.

  Jeffrey, Michael Grimes; (2008), "The Geography of Hindustani Music: The Officence of Region and Regionalism on the North Indian Classical Tradition". 3.
- 4.
- Influence of Region and Regionalism on the North Indian Classical Tradition". Prouest. pp. 142–. ISBN 978-1-109-00342-0.
  Manorma, Sharma.; (2006), "Tradition of Hindustani Music". APH Publishing. pp.
- 49–51. ISBN 978-81-7648-999-7. Vibhut, i Sachdev.; Giles, Henry.; Rupert, Tillotson.; (2002), "Building Jaipur: The Making of an Indian City", Oxford University Press. ISBN 978-0-19-566353-2.

www.worldwidejournals.com